Distance labelings: a generalization of Langford sequences

Susana Clara López, Francesc Antoni Muntaner-Batle


A Langford sequence of order m and defect d can be identified with a labeling of the vertices of a path of order 2m in which each label from d up to d + m − 1 appears twice and in which the vertices that have been labeled with k are at distance k. In this paper, we introduce two generalizations of this labeling that are related to distances. The basic idea is to assign nonnegative integers to vertices in such a way that if n vertices (n > 1) have been labeled with k then they are mutually at distance k. We study these labelings for some well known families of graphs. We also study the existence of these labelings in general. Finally, given a sequence or a set of nonnegative integers, we study the existence of graphs that can be labeled according to this sequence or set.


Langford sequence, distance l-labeling, distance J-labeling, delta-sequence, delta-set

Full Text:


DOI: https://doi.org/10.26493/1855-3974.896.fbf

ISSN: 1855-3974

Issues from Vol 6, No 1 onward are partially supported by the Slovenian Research Agency from the Call for co-financing of scientific periodical publications