Cube-contractions in 3-connected quadrangulations

Yusuke Suzuki

Abstract


A 3-connected quadrangulation of a closed surface is said to be Kʹ3-irreducible if no face- or cube-contraction preserves simplicity and 3-connectedness. In this paper, we prove that a Kʹ3-irreducible quadrangulation of a closed surface except the sphere and the projective plane is either (i) irreducible or (ii) obtained from an irreducible quadrangulation H by applying 4-cycle additions to F0 ⊆ F(H) where F(H) stands for the set of faces of H. We also determine Kʹ3-irreducible quadrangulations of the sphere and the projective plane. These results imply new generating theorems of 3-connected quadrangulations of closed surfaces.


Keywords


Quadrangulation, closed surface, generating theorem

Full Text:

PDF ABSTRACTS (EN/SI)


DOI: https://doi.org/10.26493/1855-3974.552.bf3

ISSN: 1855-3974

Issues from Vol 6, No 1 onward are partially supported by the Slovenian Research Agency from the Call for co-financing of scientific periodical publications