On spectral radius and energy of complete multipartite graphs

Dragan Stevanović, Ivan Gutman, Masood Ur Rehman

Abstract


Let Kn1, n2, …, np denote the complete p-partite graph, p > 1, on n = n1 + n2 + ⋯ + np vertices and let n1 ≥ n2 ≥ ⋯ ≥ np > 0. We show that for a fixed value of n, both the spectral radius and the energy of complete p-partite graphs are minimal for complete split graph CS(n, p − 1) and are maximal for Turán graph T(n, p).


Keywords


Spectral radius of graph, graph energy, complete multipartite graph, complete split graph, Turán graph

Full Text:

PDF ABSTRACTS (EN/SI)


DOI: https://doi.org/10.26493/1855-3974.499.103

ISSN: 1855-3974

Issues from Vol 6, No 1 onward are partially supported by the Slovenian Research Agency from the Call for co-financing of scientific periodical publications