Sharp spectral inequalities for connected bipartite graphs with maximal Q-index

Authors

  • Milica Anđelić University of Aveiro, Portugal and University of Belgrade, Serbia
  • Carlos M. da Fonseca University of Coimbra, Portugal
  • Tamara Koledin University of Belgrade, Serbia
  • Zoran Stanić University of Belgrade, Serbia

DOI:

https://doi.org/10.26493/1855-3974.271.85e

Keywords:

Double nested graph, signless Laplacian, largest eigenvalue, spectral inequalities.

Abstract

The Q-index of a simple graph is the largest eigenvalue of its signless Laplacian. As for the adjacency spectrum, we will show that in the set of connected bipartite graphs with fixed order and size, the bipartite graphs with maximal Q-index are the double nested graphs. We provide a sequence of (in)equalities regarding the principal eigenvector of the signless Laplacian of double nested graphs and apply these results to obtain some lower and upper bounds for their Q-index. In the end, we give some computational results in order to compare these bounds.

Published

2012-07-02

Issue

Section

Special Issue Bled'11