On graphs with the smallest eigenvalue at least -1 - √2, Part II

Tetsuji Taniguchi

Abstract


This is a continuation of the article with the same title. In this paper, the family ℋ is the same as in the previous paper [T. Taniguchi, On graphs with the smallest eigenvalue at least −1 − √2, part I, Ars Math. Contemp 1 (2008), 81-98]. The main result is that a minimal graph which is not an ℋ-line graph, is just isomorphic to one of the 38 graphs found by computer.

Keywords


Generalized line graph; Spectrum

Full Text:

PDF ABSTRACTS (EN/SI)


DOI: https://doi.org/10.26493/1855-3974.182.139

ISSN: 1855-3974

Issues from Vol 6, No 1 onward are partially supported by the Slovenian Research Agency from the Call for co-financing of scientific periodical publications