Groups of Ree type in characteristic 3 acting on polytopes

Dimitri Leemans, Egon Schulte, Hendrik Van Maldeghem


Every Ree group R(q), with q ≠ 3 an odd power of 3, is the automorphism group of an abstract regular polytope, and any such polytope is necessarily a regular polyhedron (a map on a surface). However, an almost simple group G with R(q) < G ≤ Aut(R(q)) is not a C-group and therefore not the automorphism group of an abstract regular polytope of any rank.


Abstract regular polytopes, string C-groups, small Ree groups, permutation groups

Full Text:



ISSN: 1855-3974

Issues from Vol 6, No 1 onward are partially supported by the Slovenian Research Agency from the Call for co-financing of scientific periodical publications