Pursuit-evasion in a two-dimensional domain

Andrew Beveridge, Yiqing Cai


In a pursuit-evasion game, a team of pursuers attempt to capture an evader. The players alternate turns, move with equal speed, and have full information about the state of the game. We consider the most restrictive capture condition: a pursuer must become colocated with the evader to win the game. We prove two general results about this adversarial motion planning problem in geometric spaces. First, we show that one pursuer has a winning strategy in any compact CAT(0) space. This complements a result of Alexander, Bishop and Ghrist, who provide a winning strategy for a game with positive capture radius. Second, we consider the game played in a compact domain in Euclidean two-space with piecewise analytic boundary and arbitrary Euler characteristic. We show that three pursuers always have a winning strategy by extending recent work of Bhadauria, Klein, Isler and Suri from polygonal environments to our more general setting.


Pursuit-evasion, lion and man, CAT(0) space, motion planning

Full Text:


DOI: https://doi.org/10.26493/1855-3974.1060.031

ISSN: 1855-3974

Issues from Vol 6, No 1 onward are partially supported by the Slovenian Research Agency from the Call for co-financing of scientific periodical publications