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abstract: Let M = M(Ω) be any triangle-free tiling of a planar polygonal region
Ω with regular polygons. We prove that its face vector f(M) = (f3, f4, f5, . . .),
its symmetry group S(M) and the tiling M itself are uniquely determined by its
boundary angles code ca(M) = ca(Ω) = (t1, . . . , tr), a cyclical sequence of numbers
ti describing the shape of Ω.
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1 Introduction
Systems of regular (planar or spherical) polygons joined edge to edge arise in
various contexts (in tilings, in polyhedral maps, in nature, in chemistry, in
art). A rich theory of such systems may be developed. Researchers usually
focus on some particular class of such systems (defined by some conditions),
try to determine all its elements and explore various questions related to
their combinatorial description, parameters, enumeration, characterization,
classification, coding, etc. To unify the investigations of such objects and
to emphasize their common characteristics we propose a general concept of
a regular polygonal system and make some first few steps towards a general
theory of such systems.
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Here we give definitions, examples and remarks; the general reconstruction
problem is presented in Section 2; results are gathered in Section 3.

A polygonal system M is a (finite or infinite) incidence structure M =
(V, E, F ) whose elements are called vertices, edges and faces: faces are ab-
stract polygons – cyclical sequences of vertices (v1, . . . , vn), and edges are
pairs of vertices {vi, vi+1}. Two faces are incident if they share an edge, two
edges are incident if they share a vertex. If M consists only of n-gons it is
called a n-system; if the number of these n-gons is m, it is a nm-system. If all
these faces are congruent polygons X, it is a monohedral system denoted Xm.
If M consists only of n1-gons, n2-gons, . . . , nk-gons, it is called a (n1, . . . , nk)-
system. The face vector (or just the f -vector) of the polygonal system M is
the sequence f(M) = (f3, f4, f5, . . .) where f(i) = fi(M) are the numbers of
its faces with i edges. We use also the notation f(M) = (3f(3), 4f(4), 5f(5), . . .).

A planar or spherical polygon P is called regular if there is a cyclic group
G = ⟨R|Rn = I⟩ of rotations acting transitively on the vertices and edges of
P , and if its boundary ∂P is simply connected (thus we exclude star polygons,
as in Kepler solids). A regular polygonal system M = M(Ω) consist of regular
polygons joined edge to edge, covering a polygonal planar or spherical region
Ω. The symmetry group of M = M(Ω) is the group of the rotations and
reflections of Euclidean space E2 or E3 preserving the incidences in M .

A code c(X) of a given mathematical object X is any (not necessarily
discrete) structure from which X can be completely reconstructed (up to
isomorphism). A boundary code of a given m-dimensional object X is any
code c(∂X) of the shape of its (m − 1)-dimensional boundary ∂X. The
boundary angles code of the planar or spherical regular polygonal system
M = M(Ω) covering (tiling) a polygonal region Ω is the cyclical sequence
ca(M) = ca(Ω) = (t1, t2, . . . , tr) of the angles ti = 180◦ − αi ∈ (−180◦, 180◦),
where αi are the interior angles between adjacent edges Ai−1Ai and AiAi+1 of
Ω. The boundary faces-edges code cf,e(M) is the cyclical sequence of symbols
f(i)e(i), where f(i) is the type of i-th boundary face and e(i) is the number
of the boundary edges of this face (see examples in the Appendix A).

A few examples and remarks will help us better understand these defini-
tions and the motivation for them.

In chemistry, the mathematical model of benzenoid molecules are called
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benzenoid systems or polyhexes (composed of regular hexagons). Similar sys-
tems are polydiamonds (composed of equilateral triangles) and polyominoes
(composed of squares) (Figure 1).

 

Figure 1: Planar regular n3-systems for n = 3, 4, 5, 6.

The motivation for the boundary angles code ca comes from the “turtle
geometry” ([1]). The definition of boundary faces-edges code cf,e is motivated
by the boundary codes of various n-systems presented below.

Several boundary codes exist for the planar regular hexagonal systems B.
One of them is the boundary edges code [6]. This code ce(B) = (k1, k2, . . . , kr)
is a cyclical sequence counting the numbers ki of boundary edges in boundary
hexagons; we travel around the boundary in the clockwise direction, starting
at any hexagon, and having the interior of B always at our right (see [2, 8]).

The code for the regular planar triangular systems (or 3-systems) T may
be defined exactly in the same way – as the boundary edges code ce(T )
counting the number of boundary edges in boundary triangles of T . Thus,
for the 3-system T in Figure 1 its code is ce(T ) = (2, 1, 2).

The case of the planar square systems (or 4-systems) S is trickier. To
get the right numbers in ce(S) we must count also the “zeros” of boundary
edges in boundary vertices adjacent to no boundary edge. We can use also a
simple boundary vertices-faces code cv,f (S), a cyclical sequence counting for
each boundary vertex how many squares (1, 2 or 3) are incident with that
vertex. For the first 4-system S in Figure 1 we have ce(S) = (2, 3, 0, 3) and
cv,f (S) = (1,2,1,1,3,1,1,2 ).

There is also a code for the regular pentagonal systems P (described in
[3]) that actually counts the numbers of vertices incident only with boundary
polygons. For the second 5-system from Figure 2 this code is (3,3,2).

One can easily imagine polygonal systems composed of regular polygons
with different numbers of edges, and also non-planar generalizations of these
concepts. Fulerens, composed of pentagons and hexagons) belong to the
class of (5, 6)-systems. The maps of Platonic solids are examples of regular
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3-systems (tetrahedron 34, octahedron 38, icosahedron 320), 4-systems (cube
46) and 5-systems (dodecahedron 512). The polygonal system of the square
pyramid is (B, C, D, E), (A, B, C), (A, C, D), (A, D, E), (A, E, B). The sys-
tem (A, B, C, D), (A, B, D, C) represents the Möbius band tiled with two
quadrilaterals. In a polygonal system more than two faces may share the
same edge, as in the “3-page book” (A, B, C, D), (A, B, D, E), (A, B, F, G).

The face vector of the planar regular (3,4,5)-system M in Figure 2 is
f(M) = (33, 41, 52) = T3S1P2, since there are three triangles T (f3 = 3), one
square S(f4 = 1) and two pentagons P (f5 = 2). Its symmetry group S(M)
is generated by one reflection (over the vertical axis).

                                                

Figure 2: A polygonal system M with the symmetry group S(M) = Z2.

The boundary faces-edges code of the planar system M in Figure 3 is
cf,e(M) = (54, 40, 32, 42). The boundary angles codes ca(M) of the spherical
systems with the same cf,e(M) depend on the size of the spherical triangle T .
Increasing the size of T the interior angles αi increase as well, hence the angles
ti = 180◦ − αi decrease. If T is big enough, the angle between the pentagon
and the triangle vanishes and we get a region with cf,e(M) = (53, 31, 42).

 

Figure 3: A planar regular polygonal (31, 41, 51)-system M with the boundary
angles code ca(M) = (120◦, 30◦, 90◦, −18◦, 72◦, 72◦, 72◦, −78◦).
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2 The reconstruction problem
The first motivation for this research was the realization that it is possible to
generalize the method that worked so well for benzenoid systems B: “Encode
the boundary of a system as a cyclical sequence of numbers, and then obtain
various information about B from its boundary code b(B)” to other planar
polycyclic molecules. Thus b(B) was used to find various relations between
the parameters of B, to determine its symmetry scheme, to calculate its face
count, etc. (as in [5, 7, 8]). With this motivation we have in the Introduction
already defined two boundary codes ce,f (M) and ca(M). Now we can ask: Is
it possible to reconstruct the face vector f(M), the symmetry group S(M) or
even the whole planar regular polygonal system M = M(Ω) from its boundary
code cf,e(M) or ca(M)? Obviously, some regular polygonal systems M are
reconstructible from the chosen boundary code of the region Ω covered by
M . How to characterize such systems? This question may be stated in
a more general form: Given some class C of objects X whose boundary is
determined by some boundary code c(∂X) characterize those X from C that
can be reconstructed from its boundary code, in other words, find X for which
c(∂X) is also the code c(X) of X.

The code is not necessarily a cyclical sequence of numbers. The bound-
ary of any simply connected polycube P (a solid composed of cubes of unit
length joined face to face) may be coded with a graph G(P ) whose vertices
are boundary square faces of P and whose edges are labeled with angles
(0,π/2, −π/2) between adjacent boundary faces. The number of cubes in
P , the symmetry group S(P ) and the polycube P itself are obviously deter-
mined by its boundary. However, their actual reconstruction from the graph
G(P ) is complicated. The code is not always a discrete structure. In analy-
sis, a differentiable function f is reconstructible from its derivative f ′ by the
Newton-Leibniz formula up to an additive constant C. Likewise, a harmonic
function f : Ω → R is determined by its values on the boundary of Ω.

Not all the codes of the same object contain the same amount of informa-
tion. For example, two similar planar triangles have different codes (lengths
a, b, c and a′, b′, c′), but the same boundary code (consisting of angles α, β, γ).
In some cases the chosen boundary code c(∂X) contains some additional in-

5



formation about the structure of X that cannot be deduced from ∂X alone.
Thus it may happen that it is possible to reconstruct X from the code of
∂X, although it is not possible to reconstruct X only from ∂X.

Example. Let Ω be a planar polygonal region composed of a regular 12-
gon and a square sharing one side. There are two tilings M1 and M2 of
Ω with 7 squares S and 12 equilateral triangles T , having the same bound-
ary angles code (90, 90, 60, 30, 30, 0, 30, 30, 30, 0, 30, 30, 30, 0, 30, 30, 30, −90)◦,
but different boundary faces-edges codes (see Figure 4):
ce,f (M1) = (43, 40, 31, 41, 31, 30, 31, 41, 31, 41, 41, 31, 41, 31, 30, 31, 41, 31, 41, 40),
ce,f (M2) = (43, 30, 41, 31, 41, 41, 31, 41, 31, 30, 31, 41, 31, 41, 41, 31, 41, 31, 30, 30).

Hence, it is not possible to reconstruct M from the shape of the boundary
∂Ω, encoded by ca(Ω). However, M is reconstructible from cf,e(M), since
there are only two possible tilings M1 and M2 of Ω. In this sense, cf,e(M) is
a stronger code, and ca(M) = ca(Ω) is weaker.

 

Figure 4: Two planar (3, 4)-systems with the same boundary and with the
same face vector (320, 412).

Remark. Two closed planar polygonal regions Ω and Ω′ may have the
same boundary angles code ca = (t1, . . . , tr), but if the ratio of the lengths
of the corresponding edges AiAi+1 and A′

iA
′
i+1 are not all the same, then the

shapes of these regions are different. Note that the lengths of the edges of a
region Ω tiled by regular polygons joined edge to edge are the same. This is
the reason why the boundary angles code ca(Ω) suffices to describe the shape
of the boundary of Ω, tiled by regular polygons.1

1However, as we see in in Figure 4, Ω itself may not be uniquely determined by the
shape of its boundary, although it is tiled by regular polygons!
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In the next Section we show: if M is a regular triangle-free tiling of a
planar polygonal region Ω, then we can use ca(M) to find the face vector
f(M) (Theorems 1 and 7), to determine the symmetry group S(M) (Theorem
10), or even to completely reconstruct M = M(Ω) (Theorem 5).

3 Results
Theorem 1 Let M = M(Ω) be a planar regular (3, 4)-system covering the
polygonal region Ω. Then the boundary angles code ca(M) = ca(Ω) deter-
mines the face vector f(M) of M .

Proof. The area of Ω can be calculated from the boundary angles code
ca(Ω) = (t1, . . . , tn) as follows: fix the coordinates of two adjacent vertices
A1 = (0, 0) and A2 = (1, 0) of Ω, use vectors to find the coordinates of other
vertices Ai, triangulate Ω and sum the areas of all these triangles.

The area of the regular n-gon Pn with side 1 is Area(Pn) = n·cot(360◦/n).
These numbers are incommensurable at least for n = 3, 4 since we have
Area(P3) =

√
3/4, Area(P4) = 1. Now it is easy to see that the integer

solutions of the equation x1(
√

3)/4 + y1 = x2(
√

3)/4 + y2 are possible only
if x1 = x2, y1 = y2. Thus f(M) is determined by ca(M). Solving the equa-
tion x1(

√
3)/4 + y1 = Area(M) is easy, since the calculated expression for

Area(M) must appear in this form, from which we just read x1 and y1. �

Theorem 2 The sum of the angles in the boundary angles code ca(Ω) =
(t1, t2, . . . , tr) of a planar polygonal region Ω is t1 + t2 + . . . + tr = 360◦.

Proof. This follows from the formula ∑n
i=1 αi = (n − 2)180◦ for the sum

of the interior angles of a n-gon: ∑n
i=1 ti = ∑n

i=1(180◦ − αi). Another proof
in the context of the “turtle geometry” is given in [1], p.175. �

Regular (planar or spherical) n-gons are usually denoted by the symbol
{n} or just n. The vertex type of the interior vertex of the regular polygonal
system M is defined as the cyclical sequence (a.b.c. . . .) of the faces a, b, c, . . .

surrounding it. The planar vertex types in this notation are listed in [4]. It
is easy to check the following very useful observation ([4], p.60).

7



Theorem 3 If the planar regular n1-gon,. . . , nr-gon surround a vertex with-
out gaps and overlaps, then 3 ≤ r ≤ 6 and (n1 −2)/n1 + . . .+(nr −2)/nr = 2,
hence there are 21 types of vertices surrounded by regular polygons in a plane
without gaps or overlaps: 3.3.3.3.3.3, 3.3.3.6, 3.3.3.4.4, 3.3.4.3.4, 3.3.4.12,
3.4.3.12, 3.3.6.6, 3.6.3.6, 3.4.4.6, 3.4.6.4, 3.7.42, 3.9.18, 3.8.24, 3.10.15,
3.12.12, 4.4.4.4, 4.5.20, 4.6.12, 4.8.8, 5.5.10, 6.6.6.

Theorem 4 The possible (interior or boundary) vertex types in spherical
regular polygonal systems are (if we exclude spherical 2-gons):

5 triangles: 3.3.3.3.3
4 triangles: 3.3.3.3.4, 3.3.3.3.5,

3 triangles: 3.3.3,
3.3.3.4, 3.3.3.5

2 triangles: 3.3, 3.3.m, 3.m.3, m ≥ 4,
3.3.4.5, 3.4.3.5, 3.3.5.5,

1 triangle: 3,
3.m, m ≥ 4,
3.4.n, 3.n.4, n ≥ 4, 3.5.n, 3.n.5, n ≥ 5

0 triangles: m,

4.m,

4.4.m, 4.m.4 , m ≥ 4, 4.5.n, 4.n.5, 19 ≥ n ≥ 4, 5.5.5.

Proof. We just use the fact that for the interior angle αn of the spherical
n-gon it holds that 180◦ > αn > 180◦ − 360◦/n, and check all the possible
cases. A similar treatment of faces is given in Appendix B. �

Theorem 5 Let M = M(Ω) be a planar regular polygonal system covering
the polygonal region Ω. If M contains no triangles then it is reconstructible
from its boundary angles code ca(M). Likewise, M is reconstructible from
ca(M) also in the case M is without squares and hexagons.

Proof. The theorem is certainly true if M contains only one face. Now
suppose it is true for the systems with m or less faces and let M = M(Ω) be
a system with m+1 faces. Since the sum of the angles αi along the boundary
of Ω is ∑

αi = (n − 2)180◦, at least one αi must be smaller than 180◦. The

8



vertex Ai of such αi < 180◦ is incident with at most three regular polygons:
with two or three triangles, with one triangle and one square or pentagon or
with two squares, or with a single n-gon with the inner angle (n − 2)180◦/n.

Hence, if M is triangle-free, then the angle αi < 180◦ is incident with only
one n-gon Pn whose interior angle is (n − 2)180◦/n = αi. Removing this Pn

from M we get a smaller system, whose tiling is unique, by the induction
hypothesis. Hence the position of each polygon in M is uniquely determined.

Similarly, if there are no squares and hexagons in M , then every interior
angle αi < 180◦ is incident either with a single polygon Pn (and then we
proceed as before) or with a triangle and a pentagon. But there is no planar
interior vertex type containing faces 3 and 5 (see Theorem 3). Therefore
both the vertices of the edge AC shared by a boundary triangle ABC and
a pentagon are boundary vertices (see Figure 5). If we interchange the po-
sitions of two adjacent boundary faces 3 and 5 along the adjacent boundary
edges then the interchanged face 5 covers a neighbourhood of C (as in Figure
5 right). So there is only one possible tiling of M in the neighbourhood of all
boundary points incident with 3.5 or 5.3. Removing this triangle and pen-
tagon we get a smaller region for which the theorem is true by the induction
hypothesis. �

 

Figure 5: Left: A (3, 5)-system with two boundary components and with the
cyclical symmetry group C15. Right: an illustration of the fact that such
system cannot have two different tilings.

Remark. It may happen that the boundary of M − Pn is no longer a
simple closed curve (see Figure 6); it may have crossings and it may have
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more than one component. However, by repeating the process of removing
the polygons corresponding to interior angles αi < 180◦ from the system and
calculating the boundary angles code of the smaller system we may find the
exact locations of each face in the system algorithmically.

For example, removing a boundary square P4 from M changes the bound-
ary code from ca(M) = (t1, t2, . . . , ti−1, ti = α4 = 90◦, ti+1, . . . , tr) into
ca(M −P4) = (t1, t2, ti−1 +α4, α4 −180◦, α4 + ti+1, . . . , tr), as in Figure 6. For
n ≥ 5 we get a more complicated formula for ca(M − Pn), dependent on how
many successive angles ti, ti+1, . . . ti+k in ca(M) are equal to (n − 2)180◦/n.

                                        

Figure 6: Removing of a boundary face may produce a system that is no
more face-connected.

Just as in the planar case, there are polygonal regions on the sphere ad-
mitting more than one regular tiling, too. A spherical pentagon, covered
by five regular triangles sharing a vertex of the spherical icosahedron is an
example of such a region.

Theorem 6 Let M be a spherical regular polygonal system M without tri-
angles and squares. If the boundary of M has only one component, then M

is reconstructible from its boundary faces-edges code cf,e(M).

Proof. By Theorem 4 M has no interior points. Hence there can be no
cycle of faces in M , and cf,e(M) completely describes the system M . �

Theorem 7 The face vector f(M) = (f3, f4, f5, . . .) and consequently also
the number of faces f = f3+f4+f5+. . . of any regular planar polygonal system
M = M(Ω) without hexagons or without triangles is uniquely determined by
the area of Ω, and this area is uniquely determined by its boundary angles
code ca(Ω) = ca(M).
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Proof. If M = M(Ω) has at most two faces, then its face vector is obviously
determined by its boundary code, except in the case of a hexagon, which
may be decomposed into six triangles. Suppose the theorem is true for any
system with n faces. Take a system M with n + 2 faces. In every boundary
vertex with a positive angle ti we can repeat the procedure of taking out the
polygons of M as in the proof of Theorem 5. In the boundary vertices with
the interior angles filled with 3.4, 4.3, 3.5, 5.3, we take away from M both
combinations and get two smaller systems M∗ and M∗∗ composed of n faces
which must have the same area, hence they have the same face vector by the
induction hypothesis. Therefore M has the unique face vector, too. �

Theorem 8 The symmetry group S(M) of a planar or spherical regular
polygonal system M = M(Ω) is a subgroup of S(Ω) = S(∂Ω).

Proof. Any rotation or reflection preserving M preserves the region Ω,
tiled by the polygons of M . The symmetry group of the boundary of Ω is
obviously isomorphic to the symmetry group of Ω. �

A symmetry of the boundary of Ω does not necessarily induce a symmetry
of the regular polygonal system M = M(Ω).

Example. If we glue together the two 12-gons from Figure 4 (without the
added top square) along the vertical edge, we get a region with two reflection
symmetries (over the vertical axis and over the horizontal axis), yet its tiling
has only one reflection symmetry (over the horizontal axis).

Theorem 9 If there is only one regular polygonal system M = M(Ω) cov-
ering the region Ω then the groups S(M) and S(Ω) are isomorphic.

Proof. If the tiling M of Ω with regular polygons is unique, then every
symmetry of Ω automatically induces an automorphism of M . �

Lemma 1 Let Ω be a planar regular polygonal system with given lengths of
its edges li = AiAi+1 and with the boundary angles code c(Ω) = (t1, . . . , tr).
If ti+k = tk and if li+k = lk for some k ≥ 2, then Ω has a rotational symmetry
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for the angle 360◦/(r/k).
ii) if ca(Ω) = (t1, . . . , tr) = (tr, . . . , t1) and if the cyclical sequence of the
lengths li of the boundary edges AiAi+1 has a reflection symmetry, then Ω
has a reflection symmetry.

Proof. i) This is obviously true for k = 1, for in that case we have
ca(Ω) = (t, t, . . . , t), hence all ti are the same, and all li are the same, hence
Ω is a regular polygon Pm invariant for the rotation for the angle 360◦/r.

In the case k = 2 we have ca(Ω) = (t, s, t, s . . . , t, s). Removing from Ω the
congruent triangles △A1A2A3, △A3A4A5, . . . , △A2n−1A2nA1 we get a region
with r/k = r/2 boundary edges where all ti are the same and all li the same
(case k = 1) and for which we know i) is true; hence Ω has the rotation for
the angle 360◦/(r/2), too.

Similarly, for the k ≥ 3 we remove r/k congruent triangles from Ω to get a
smaller region with r − r

k
= nk − n = n(k − 1) boundary angles and a period

k − 1, hence by the induction hypothesis having a rotation Rn for the angle
n = r

k
= n(k−1)

k−1 . Hence Ω has the rotation for the angle 360◦/(r/k), too.
ii) Reflection symmetry of ca(Ω) can have three forms:2
a) ca = (y, z, . . . , b, a, a, b, . . . , y, z),
b) ca = (x, y, z, . . . , b, a, a, b, . . . , y, z)
c) ca = (x, y, z, . . . , b, a, a, b, . . . , y, z, w)
and the same holds for the cyclical sequences of the lengths li.
Obviously ii) is true if Ω has 3,4,5 or 6 sides, since the only possible cases of

ca(Ω) and Ω are: (x, y, y), (y, z, z, y), (x, y, y, z), (x, y, z, z, y), (x, y, z, z, y, w)
and (x, y, z, z, y, x). Now we can use a simple induction argument to see that
if Ω has more sides than 6, then we can cut it in two pieces with the boundary
angles code of the types c) or b), and each of these two pieces has the same
reflection symmetry (whose axis is the symmetral the same base XY ), hence
Ω has the same symmetry (see Figure 7). This is clear for regions of the type
a); the regions of the types b) and c) are obtained from a region of the type
a) by glueing one or two triangles to it. �

2The letters x, y, z, a, b, . . . are used here to denote angles, not edges.
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Theorem 10 Let M = M(Ω) be a regular planar polygonal system without
triangles covering the region Ω. Then the symmetry group S(M) of M and
the center of the rotation Rn are determined by its boundary angles code
ca(M) as follows:
i) if ca(M) has a reflection symmetry ca(M) = (t1, . . . , tr) = (tr, . . . , t1) then
M has a reflection symmetry ;
ii) if ca(M) = (t1, . . . , tr) is a periodical cyclical sequence: ti+k ≡ ti for some
k > 2 then M has a rotational symmetry for the angle 360◦/(r/k);
iii) If f ≡ 1(mod n) then the center of the rotation Rn is in a face; if
f ≡ 0(mod n) and n > 2 then the center of the rotation is in the vertex (if
n > 2 ); if f ≡ 0(mod n) and n = 2 then the center of the rotation is in an
edge.

Proof. By Theorem 5, M = M(Ω) is uniquely determined by its boundary
turns code ca(M) = ca(Ω). By Theorem 8, the group of symmetries of M

is isomorphic to the group of symmetries of the boundary of Ω. Now i)
and ii) follow directly from Lemma 1. Indeed, if the boundary angles code
ca(M) = ca(Ω) of length r remains the same after the shift k (mod m), then
r = kn is divisible by k and Ω has a rotational symmetry Rn (see Lemma 1).
Likewise, the reflection symmetry of ca(Ω) implies the reflection symmetry
of Ω, since all the edges of Ω are of the same size (since they are tiled by
the regular polygons of M joined edge to edge) and we can apply Lemma 1.
Now we use again S(Ω) = S(M), implied by Theorem 5.

The center of the rotational symmetry Rn of any planar regular polygonal
system can be in a vertex (this is possible only in the cases when n = 3, 4, 6),
in an edge center (this is possible only if n = 2) or in a center of a m-gon,
where n divides m. If there are no triangles in the system, and if n is odd,
then the center of the rotation Rn is in a face center.

If the rotational symmetry Rn has the center in a m-gon, then fm ≡ 1
(mod n) while the number of all other i-gons fi is divisible by n, hence f ≡ 1
(mod n). If the center of the rotation is in a vertex or in an edge center, then
fi ≡ 0 (mod n) for every i, hence f ≡ 0 (mod n). By Theorem 7 the face
vector of M without triangles may be obtained from the boundary turns code
ca(M) so the numbers fi are known, hence we can easily distinguish between
the two possible cases with rotational symmetry: f ≡ 1 (mod n) and f ≡ 0
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(mod n). If f ≡ 0 (mod n) and n > 2 then the center of the rotation must
be in a vertex; If f ≡ 0 (mod n) and n = 2 then the center of the rotation
must be in an edge.

�

Figure 7: Left: a region with rotational symmetry, middle: a region with
reflection symmetry; right: a region whose all boundary angles are identical
(equal to 120◦, as in a regular hexagon), yet it has no symmetry.

Remark. So the information hidden in the boundary angles code suffices
to find out whether the center of rotation is located in a face, in a vertex or
in the middle of an edge.3

4 Summary and open problems
We proposed a concept of a regular polygonal system, a mathematical model
of chemical (planar or non-planar) molecules composed of chains of atoms
forming regular n-gonal cycles of equal or various length (n = 3, 4, 5, 6, . . .).

3Another possible approach to this question is to calculate the center of rotation directly
via orbit barycenters, and compare its coordinates with the coordinates of all the vertices,
face centers and edge centers of the tiling M .
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We proved that the structure (and hence the symmetry group) of any reg-
ular planar polygonal system M without triangles or without squares and
hexagons is reconstructible from its boundary angles code ca(M).

The proof of Theorem 1 implicitly uses a simple incommensurability argu-
ment. This type of argument can be generalized as in the following definition
and lemma:

Definition 1 The quantities q1, q2, . . . , qn are called incommensurable, if they
satisfy the following condition: if two linear combinations of these quantities
with integer coefficients are the same: ∑n

i=1 aiqi = ∑n
i=1 biqi, then their cor-

responding coefficients must be the same: ai = bi.

From this definition immediately follows:

Lemma 2 If any quantity q can be expressed as an integer linear combina-
tion q = ∑n

i=1 aiqi of incommensurable quantities, then the coefficients ai are
uniquely determined by q.

Conjecture 1 The areas of all planar regular polygons with the same side
length (except the triangle or hexagon) are incommensurable quantities.

Conjecture 2 The volumes of all Platonic and Archimedean solids with the
same side are incommensurable quantities.

If one could prove Conjecture 1, this would automatically prove also The-
orem 1. However, the converse is not true. If one could prove Conjecture 2
this would prove another conjecture:

Conjecture 3 If we glue together copies of Platonic and Archimedean solids
(with unit sides) face to face then we can find the number of each of them
just by knowing the volume of such composed solid.
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Appendix A. Planar regular (3,4)-systems
These systems may be classified by two parameters: the numbers f3 and f4

of triangular and square faces, as in Figure 8.

Figure 8: Regular planar (3,4)-systems classified by two parameters

As we see, the number of these systems grows very quickly with the total
number of faces f = f3 + f4. There are 16 such systems with 1, 2 or 3 faces.
In Figure 9 they are arranged by the increasing total number of faces. We
give also their boundary faces-edges codes cf,e and boundary angles codes ca.
Observe that in all these cases all the faces are boundary faces. Since for the
planar regular polygonal (3,4)-systems all their boundary angles are multi-
ples of 30◦, we give the boundary angles codes also in the form of multiples
of 30◦. The corresponding boundary faces-edges code and boundary angles
codes of these (3, 4)-systems, ordered as in Figure 9, are:
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cf,e(M) ca(M)
(33) (120, 120, 120)◦ = 30◦(4, 4, 4)
(44) (90, 90, 90, 90)◦ = 30◦(3, 3, 3, 3)
(32, 32) (60, 120, 60, 120)◦ = 30◦(2, 4, 2, 4)
(43, 32) (120, 30, 90, 90, 30)◦ = 30◦(4, 1, 3, 3, 1)
(43, 43) (90, 0, 90, 90, 0, 90)◦ = 30◦(3, 0, 3, 3, 0, 3)
(32, 31, 32, 30) (60, 60, 120, 0, 120)◦ = 30◦(2, 2, 4, 0, 4)
(32, 30, 43, 31) (−30, 90, 90, 30, 60, 120)◦ = 30◦(−1, 3, 3, 1, 2, 4)
(32, 31, 43, 30) (90, 90, −30, 120, 60, 30)◦ = 30◦(3, 3, −1, 4, 2, 1)
(32, 41, 32, 41) (120, 30, 30, 120, 30, 30)◦ = 30◦(4, 1, 1, 4, 1, 1)
(32, 40, 32, 42) (120, −30, 120, 30, 90, 30)◦ = 30◦(4, −1, 4, 1, 3, 1)
(43, 40, 32, 42) (90, −60, 120, 30, 90, 0, 90)◦ = 30◦(3, −2, 4, 1, 3, 0, 3)
(42, 32, 40, 43) (90, 90, 90, 90)◦ = 30◦(1, 4, −2, 3, 3, 0, 3)
(43, 41, 32, 41) (90, 0, 30, 120, 30, 0, 90)◦ = 30◦(3, 0, 1, 4, 1, 0, 3)
(43, 30, 43, 31) (90, 90, −60, 90, 90, 30, 30)◦ = 30◦(3, 3, −2, 3, 3, 1, 1)
(43, 41, 43, 41) (90, 90, 0, 0, 90, 90, 0, 0)◦ = 30◦(3, 3, 0, 0, 3, 3, 0, 0)
(43, 40, 43, 42) (90, 90, −90, 90, 90, 0, 90, 0)◦ = 30◦(3, 3, −3, 3, 3, 0, 3, 0)

   

      

Figure 9: Planar regular polygonal (3,4)-systems with f = f3 + f4 ≤ 3 faces.

Appendix B. Types of faces
The idea to classify the types of hexagons in a benzenoid system with respect
to their contacts to adjacent faces in a system ([2, 8]) may be generalized to
any n-gonal faces in any polygonal system as follows:
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Definition 2 The type of the n-gonal face f in a polygonal system M is
the cyclical binary sequence (b1, . . . , bn) where bi = 0 if the i-th edge of f is
incident to at least one other face of M and bi = 1 if it is a boundary edge
of f . The number of types of n-gons having k entries 1 in the binary code is
denoted T (n, k). The number of possible types of a n-gon is denoted T (n).

 

Figure 10: Boundary face types T1, T2, T3, S1, S2, S1+1, S3, S4, P1, P2, P1+1,
P3, P1+2, P4, P5.

Theorem 11 The following relations hold:
i) T (n) equals the number of binary cyclical sequences of length n.
ii) T (3) = 4, T (4) = 6, T (5) = 8, T (6) = 13.

Proof. i) This is obvious, and trivially implies also relations T (n, k) =
T (n, n − k) and T (n) = T (n, 0) + T (n, 1) + . . . + T (n, n). To each type t of a
n-gon exists the opposite type t∗ with the entries b∗

i = 1 − bi, hence t∗∗ = t.
For ii) see Figure 10. Summing the adjacent entries 1 and ignoring the

entries 0 we can, at least for the triangles T , squares S and pentagons P ,
denote their possible boundary types like this: T0 = (0, 0, 0), T1 = (1, 0, 0),
T2 = (1, 1, 0) = T ∗

1 , T3 = (1, 1, 1) = T ∗
0 , S0 = (0, 0, 0, 0), S1 = (1, 0, 0, 0),

S2 = (1, 1, 0, 0) = S∗
2 , S1+1 = (1, 0, 1, 0) = S∗

1+1, S3 = (1, 1, 1, 0) = S∗
1 ,

S4 = (1, 1, 1, 1), P0 = (0, 0, 0, 0, 0), P1 = (1, 0, 0, 0, 0) , P2 = (1, 1, 0, 0, 0),
P1+1 = (1, 0, 1, 0, 0), P1+2 = (1, 0, 1, 1, 0) = P ∗

1+2, P3 = (1, 1, 1, 0, 0) = P ∗
2 ,

P4 = (1, 1, 1, 1, 0) = P ∗
1 , P5 = (1, 1, 1, 1, 1). The inner faces are T0 = (0, 0, 0),

S0 = (0, 0, 0, 0), P0 = (0, 0, 0, 0, 0. The 13 types of boundary hexagons
H with 1, 2, 3, 4 or 5 boundary edges, e.g. H1+1+1 = (1, 0, 1, 0, 1, 0) or
H2 = (1, 1, 0, 0, 0, 0) are given in [2] and more precisely classified in [8]. �

Remark. The sequence T (n) (although defined only for n > 3) corresponds
to the sequence A000029 in OEIS ([9]).
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