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Abstract

In this article we show the non-existence of a class of spherical tilings by congruent
quadrangles. We also prove several forbidden substructures for spherical tilings by con-
gruent quadrangles. These are results that will help to complete of the classification of
spherical tilings by congruent quadrangles.
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1 Introduction
In this paper we prove the non-existence of a subclass of spherical tilings by congruent
quadrangles which have three equal sides and one side different. We also list several for-
bidden substructures for this type of spherical tilings.

It follows from Euler’s formula that spherical tilings by congruent polygons can only
exist for triangles, quadrangles and pentagons.
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In [5], Davies completed the classification of spherical tilings by congruent triangles.
He however only gave an outline of the proof and his classification contained several du-
plicates. Ueno and Agaoka [9] worked out the details of the proof, thus completely solving
the classification of spherical tilings by congruent triangles.

Ueno and Agaoka [8] gave several examples of spherical tilings by congruent quad-
rangles and showed that the classification of these would be considerably harder than the
classification of spherical tilings by congruent triangles. Akama and Sakano [7] completed
the classification of spherical tilings by congruent kites, darts and rhombi. Since these
quadrangles can be subdivided into congruent triangles, they could rely on the classifica-
tion by Ueno and Agaoka to solve this classification.

The spherical quadrangles can be subdivided into classes based on the cyclic list of edge
lengths. Only four of these classes admit a spherical tiling by congruent quadrangles[8]:

1. aaaa

2. aaab

3. aabb

4. aabc

The cases handled by Akama and Sakano cover type 1 and type 3.
The remaining two cases are spherical tilings by congruent quadrangles which have

three equal sides and one side different (type 2), and spherical tilings by congruent quad-
rangles which have three different sides and an adjacent pair of sides of the same length
(type 4). Akama, Nakumara and Sakano [1, 2, 7] showed that if concave quadrangles are
allowed, there exist several tilings which have non-congruent tiles but for which the inner
angles and the underlying graph are the same.

In this paper we focus on convex quadrangles of type 2. We show that there exists
no spherical tiling by congruent quadrangles of type 2 if the quadrangles are isosceles.
Furthermore we show several forbidden substructures for the underlying graph of spherical
tilings by congruent quadrangles of type 2.

This paper is organised as follows. We start by giving some general definitions and
notations. Then we show the non-existence of spherical tilings by congruent quadrangles
of type 2 with isosceles quadrangles. Next we look at the different possible configurations
of angles around each vertex and finally we use this to show some forbidden substructures
for the underlying graph.

2 Definitions
To simplify the notation we will always express angles in π radians.

A spherical tiling is a subdivision of the unit sphere into spherical polygons. Edges are
always assumed to be parts of great circles. All tilings are edge-to-edge tilings.

A spherical quadrangle is of type 2 if the cyclic list of edge-lengths is aaab (with
a 6= b). We use the naming convention shown in Figure 1. We only consider convex
spherical quadrangles. This means that we always assume

0 < α, β, γ, δ < 1.

Throughout this paper G will always refer to a 2-connected, simple graph on the 2-
sphere in which all faces are quadrangles. Let A(G) be the set of ordered pairs (f, v) such
that f is a face of G, v is a vertex of G and v ∈ f . A chart (G,φ), is an ordered pair
consisting of a graph G and a function φ : A(G) → {α, β, γ, δ} such that for each face
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Figure 1: Naming conventions in a spherical quadrangle of type 2.

of the graph, the cyclic list of the inner angles is (α, β, γ, δ) or the reverse. These four
parameters, α, β, γ, δ, will take on the role of angles of tiles, so a chart can be seen as a
combinatorial spherical tiling by congruent quadrangles. We say a vertex of the tiling has
vertex type n1α+ n2β + n3γ + n4δ, if there are n1 pairs containing v that are mapped to
α, n2 pairs containing v that are mapped to β, n3 pairs containing v that are mapped to γ,
and n4 pairs containing v that are mapped to δ.

It is clear how a chart can be obtained from a spherical tiling by congruent quadrangles.
Vice versa, a chart (G, f) is solvable, if there exist values for the four angles such that there
is a spherical tiling realising that graph and those values.

There are several conditions that need to be satisfied in order for a spherical tiling by
congruent quadrangles to exist. If F is the number of tiles, then the following condition
follows from the fact that the area of the tiles need to sum up to the area of the sphere.

α+ β + γ + δ − 2 =
4

F
(2.1)

Lemma 2.1. In a convex spherical quadrangle of type 2, we have that

α+ δ < 1 + β, (2.2)

α+ β < 1 + δ, (2.3)

α+ δ < 1 + γ, (2.4)

γ + δ < 1 + α. (2.5)

Proof. Draw the diagonal as is shown in Figure 2. The area of the triangle ABD is given
by

α+ β1 + δ1 − 1.

The area of the spherical lune that is formed by the great circles AB and BD is given by
2β1. Since the area of the triangle is smaller than that of the lune, we have that

α+ β1 + δ1 − 1 < 2β1

which can be rewritten as
α+ δ1 < 1 + β1 (2.6)



300 Ars Math. Contemp. 8 (2015) 297–318

A

B C

D

a

a

a

b
α

β1
β2 γ

δ1
δ2

Figure 2: A diagonal in a spherical quadrangle of type 2.

The triangle BDC is an isosceles triangle. This implies that

δ2 = β2 (2.7)

If we combine inequality 2.6 and equation 2.7, we find equation 2.2. Equation 2.3 can
be proven using the spherical lune formed by AD and BD. Equation 2.4 and equation 2.5
can be proven by using the other diagonal.

Lemma 2.2. In a convex spherical quadrangle of type 2, we have that

α 6= γ (2.8)

and
δ 6= β. (2.9)

Proof. Assume that δ = β. Draw the diagonal as is shown in Figure 2. The triangle BDC
is an isosceles triangle, so we have that δ2 = β2. This implies that δ1 = β1, so ABD is an
isosceles triangle and a = b. This is however a contradiction, so we find that δ 6= β. By
using the other diagonal, we can prove that α 6= γ.

Lemma 2.3. In a convex spherical quadrangle of type 2, we have that

α = δ ⇔ β = γ. (2.10)

Proof. Assume that α = δ. The great circles AB and DC in Figure 1 intersect in two
points, N and S. Since α = δ, the triangle ADN is an isosceles triangle, but since the
distance from A to B and from D to C is a, then also the triangle BCN is an isosceles
triangle and β = γ. The other direction is completely analogous.

Lemma 2.4. Let (G, f) be a solvable chart. Let v be a vertex of G with vertex type
n1α+ n2β + n3γ + n4δ in (G, f), then n1 + n4 is even.

Proof. This follows immediately from the fact that each edge of length b that is incident to
v contributes exactly two to n1 + n4 and each angle α and δ at the vertex v corresponds to
exactly one edge of length b incident to v.

The following lemma can easily be proved using Euler’s formula.
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Figure 3: An isosceles quadrangle of type 2

Lemma 2.5. Let G be a quadrangulation of the sphere. Let Vi (with 3 ≤ i ≤ ∆, where ∆
is the largest degree of the G) be the number of vertices in G with degree i, then we have
the following equality:

V3 = 8 +

∆∑
i=5

(i− 4)Vi.

3 Spherical tilings by congruent isosceles quadrangles of type 2
An isosceles spherical quadrangle of type 2 is a convex spherical quadrangle having the
cyclic list of edge-lengths aaab (with a 6= b) and in which α = δ and β = γ. Therefore the
cyclic list of the inner angles in a isosceles quadrangle is (α, β, β, α). An example of such
a quadrangle is given in Figure 3.

We can rewrite several of the conditions for general spherical quadrangles of type 2.
Equation 2.1 can be rewritten as

2α+ 2β − 2 =
4

F
. (3.1)

The corresponding lemma for Lemma 2.1 is

Lemma 3.1. In an isosceles spherical quadrangle of type 2, we have that

2α < 1 + β. (3.2)

The corresponding lemma for Lemma 2.2 is

Lemma 3.2. In an isosceles spherical quadrangle of type 2, we have that

α 6= β (3.3)

We now have the tools to prove the main theorem of this section.

Theorem 3.3. There is no isosceles spherical tiling by congruent quadrangles of type 2.

Proof. From Lemma 2.5, we know that each quadrangulation contains at least 8 vertices
of degree 3. The possible vertex types for a vertex of degree 3 in a spherical tiling by
congruent isosceles spherical quadrangles of type 2 are 2α+β and 3β. There is no isosceles
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spherical tiling by congruent quadrangles of type 2 with two vertices of degree 3 with a
different vertex type, because in that case we would have α = β, which does not correspond
to a quadrangle of type 2 (cf. Lemma 3.2). So all vertices of degree 3 have the same type.

We will examine both possible vertex types.

vertex type 2α + β

We first assume that all vertices of degree 3 have vertex type 2α+ β.

As a consequence all vertices of degree d > 3 have vertex type dβ or dα. Otherwise
there would be a vertex of degree d > 3 with vertex type

2iα+ (d− 2i)β

with 0 < i <
⌊
d
2

⌋
. If we combine this with the vertex type for the vertices of degree

3, then we find that
(2i− 2)α+ (d− 2i− 1)β = 0.

Since α > 0 and β > 0, this is equivalent with{
2i− 2 = 0
d− 2i− 1 = 0

But since d > 3, this has no solution.

It is also not the case that all vertices are of degree 3, since that would mean that
there are more α’s than β’s.

This means that there are only a limited number of possibilities for different degrees
in this situation:

• the quadrangulation has two types of vertices: vertices of degree 3 with vertex
type 2α+ β and vertices of degree d > 3 with vertex type dβ, or

• the quadrangulation has three types of vertices: vertices of degree 3 with vertex
type 2α+ β, vertices of degree d > 3 with vertex type dβ, and vertices of even
degree de > 3 with vertex type deα (de is even due to Lemma 2.4).

Assume first that there are only vertices of degree 3 with vertex type 2α + β and
vertices of degree d > 3 with vertex type dβ. In this case we get two equations:{

2α+ β = 2
dβ = 2

This is equivalent to {
α = 1− 1

d
β = 2

d

If we substitute these values for α and β in inequality 3.2, we find

2− 2

d
< 1 +

2

d
.

This is equivalent to
d < 4,
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which contradicts d > 3.

Next we assume that there are only vertices of degree 3 with vertex type 2α + β,
vertices of degree d > 3 with vertex type dβ, and vertices of even degree de > 3
with vertex type deα. In this case we get three equations: 2α+ β = 2

dβ = 2
deα = 2

This is equivalent to 
4
de

+ 2
d = 2

β = 2
d

α = 2
de

The first equation has no solution, since de ≥ 4 and d > 3.

vertex type 3β

Next we assume that all vertices of degree 3 have vertex type 3β. This means that
β = 2

3 and from equation 3.1, we then find that

α =
1

3
+

2

F
=
F + 6

3F
. (3.4)

As 3β is equal to 2, any vertex type that contains a β, has at most 2β. Since there
has to be at least one vertex for which the vertex type contains an α, there is a vertex
of degree d with one of the following three types:

• dα,
• (d− 1)α+ β,

• (d− 2)α+ 2β.

We examine the three possibilities:

dα

Combined with equation 3.4, this gives us

d
F + 6

3F
= 2

which can be rewritten as
6d = (6− d)F.

Since d and F are both positive integers, and d is even and larger than 3, we
find that this only holds if d = 4 and F = 12.

(d− 1)α+ β

Combined with equation 3.4, this gives us

(d− 1)
F + 6

3F
= 2− 2

3
=

4

3
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Figure 4: The quadrangles around a vertex t of degree 3.

which can be rewritten as

6(d− 1) = (5− d)F.

Since d and F are both positive integers, and d is odd and larger than 3, we find
that this never holds.

(d− 2)α+ 2β

Combined with equation 3.4, this gives us

(d− 2)
F + 6

3F
= 2− 4

3
=

2

3

which can be rewritten as

6(d− 2) = (4− d)F.

Since d and F are both positive integers, and d is even and larger than 3, we
find that this never holds.

So the only possibility is a quadrangulation which 12 faces. Such a quadrangulation
has 14 vertices, of which at least 8 have degree 3 and vertex type 3β. This already
accounts for all of the 24β’s, so all remaining 6 vertices have degree 4 and vertex
type 4α.

Assume we have a vertex t of degree 3 as is shown in Figure 4. This vertex has vertex
type 3β. This means that, in the quadrangle tuzw, the angle at vertex t is β and either
the angle at the vertex w or the angle at the vertex u is α. Without loss of generality,
we can assume that the angle at the vertex u is α. This implies that the vertex type
of u is 4α, and we find that this means that the vertex type of both the vertices w
and v is 3β. But then the quadrangle twyv has three consecutive angles β. This is
a contradiction, so there is no spherical tiling by congruent isosceles quadrangles of
type 2 with vertex types 3β and 4α.

This proves that there is no spherical tiling by congruent isosceles spherical quadrangles
of type 2.
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1 2 3 4 5 6 7 8 9 10
1 4.1a 4.1a 4.1a 4.1b
2 4.1a 4.1a 4.1a 4.1c 4.1b
3 4.1a 4.1c 4.1a 4.1a
4 4.1a 4.1b 4.1a 4.1a
5 4.1a 4.1a 4.1b 4.1a
6 4.1a 4.1a 4.1b 4.1a
7 4.1a 4.1a 4.1c 4.1b 4.1a
8 4.1c 4.1a 4.1a 4.1a
9 4.1b 4.1a 4.1a 4.1a

10 4.1b 4.1a 4.1a 4.1a

Table 1: Overview of the combinations of two vertex types for vertices of degree 3. For
each impossible combination of vertex type, the corresponding case is given.

4 Vertex types in spherical tilings by arbitrary congruent quadrangles
of type 2

Since there are at least 8 vertices of degree 3 (and in most cases even more), it can be
interesting to look at the possible vertex types for these vertices, and examine whether
certain combination are not possible. Owing to Lemma 2.4, there are ten possible vertex
types for vertices of degree 3 in a spherical tiling by congruent quadrangles of type 2:

1) 3β

2) 2β + γ

3) α+ δ + β

4) 2α+ γ

5) 2α+ β

6) 3γ

7) 2γ + β

8) α+ δ + γ

9) 2δ + β

10) 2δ + γ

The last five of these types can be obtained from the first five by interchanging α with
δ, and β with γ.

The following lemma shows that several combinations of vertex types for vertices of
degree 3 are not possible in a spherical tiling by congruent quadrangles of type 2. Table 1
gives an overview of all combinations.

Lemma 4.1. There is no spherical tiling by congruent quadrangles of type 2 which has
any of the following combinations of vertex types:

a) 3β and 2β + γ, 3β and 3γ, 3β and β + 2γ, 2β + γ and 3γ, 2β + γ and β + 2γ,
α+ δ+ β and 2α+ β, α+ δ+ β and α+ δ+ γ, α+ δ+ β and 2δ+ β, 2α+ γ and
2α+ β, 2α+ γ and α+ δ + γ, 2α+ γ and 2δ + γ, 2α+ β and 2δ + β;

b) 3β and 2δ + β, 2β + γ and 2δ + γ, 2α+ γ and 3γ, 2α+ β and 2γ + β;

c) 2β + γ and α+ δ + γ, 2γ + β and α+ δ + β.
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Proof.

a) Each of these combinations either implies that α = δ, or that β = γ. This means that
the quadrangle is a isosceles quadrangle of type 2. Due to Theorem 3.3, there are no
spherical tilings by congruent quadrangles with such a tile.

b) The first two combinations imply that β = δ, but this contradicts inequality 2.9. The
last two combinations imply that α = γ, but this contradicts inequality 2.8.

c) We will only give the proof for 2γ+β and α+δ+β. The other case can be obtained
by interchanging α with δ, and β with γ.

When we combine
α+ δ + β = 2

with equation 2.1, we get

γ =
4

F
.

When we combine this with
2γ + β = 2,

we get

β = 2− 8

F
.

Since β < 1, this implies that F < 8. However, if F = 6, we have that β = γ. This
is not possible due to Lemma 2.3 and Theorem 3.3. So we find that this combination
is not possible.

Lemma 4.2. In each spherical tiling by congruent quadrangles of type 2 we have the
restrictions on the number of faces that are given in Table 2.

Proof. We will examine case by case. First we note that for all quadrangulations, we have
that F ≥ 6, so F 6= 6 is equivalent to F > 6.

• Vertex type 1 and vertex type 3
In this case we have the following system of equations: 3β = 2

α+ β + δ = 2
α+ β + γ + δ = 2 + 4

F

The last equation in this system corresponds to equation 2.1. If we subtract the
second equation from this last equation, we find that

γ =
4

F
.

Owing to Lemma 2.3 and Theorem 3.3, we have that F 6= 6, because otherwise
β = γ. By combining the first two equations in the system, we find that

α+ δ =
4

3
.
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When we substitute these previous two equalities into inequality 2.4, we find that

4

3
= α+ δ < 1 + γ = 1 +

4

F
,

which can be rewritten as
F < 12.

• Vertex type 1 and vertex type 8
In this case we have the following system of equations: 3β = 2

α+ γ + δ = 2
α+ β + γ + δ = 2 + 4

F

By combining the last two equations, we find that β = 4
F , but together with the first

equation of the system, this implies that F = 6.

• Vertex type 1 and vertex type 10
In this case we have the following system of equations: 3β = 2

γ + 2δ = 2
α+ β + γ + δ = 2 + 4

F

By substituting the first two equations in the third, we get:

α− δ =
4

F
− 2

3
.

In combination with Lemma 2.3 and Theorem 3.3, this implies that F 6= 6.

• Vertex type 2 and vertex type 3
In this case we have the following system of equations: 2β + γ = 2

α+ β + δ = 2
α+ β + γ + δ = 2 + 4

F

The last two equations give us that

γ =
4

F
,

and using the first equation from the system, this then implies that

β = 1− 2

F
.

In combination with Lemma 2.3 and Theorem 3.3, these last two equations imply
that F 6= 6.



Y. Akama and N. Van Cleemput: Spherical tilings by congruent quadrangles . . . 309

• Vertex type 2 and vertex type 8
In this case we have the following system of equations: 2β + γ = 2

α+ γ + δ = 2
α+ β + γ + δ = 2 + 4

F

The last two equations give us that

β =
4

F
,

and using the first equation from the system, this then implies that

γ = 2− 8

F
.

In combination with Lemma 2.3 and Theorem 3.3, these last two equations imply
that F 6= 6.

• Vertex type 3 and vertex type 4
In this case we have the following system of equations: 2α+ γ = 2

α+ β + δ = 2
α+ β + γ + δ = 2 + 4

F

Once again, the last two equations give us that

γ =
4

F
,

and using the first equation from the system, this then implies that

α = 1− 2

F
.

In combination with inequality 2.8, these last two equations imply that F 6= 6.

• Vertex type 4 and vertex type 9
In this case we have the following system of equations: 2α+ γ = 2

2δ + β = 2
α+ β + γ + δ = 2 + 4

F

This is equivalent to the following system: γ = 2− 2α
β = 2− 2δ
α+ δ = 2− 4

F

By combining the last equation in this system with inequalities 2.2 and 2.4, we find
that

β > 1− 4

F
,
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and
γ > 1− 4

F
.

By combining these inequalities with the first two equations in the system, we find
that

α <
1

2
+

2

F
,

and
δ <

1

2
+

2

F
.

If we add up these two inequalities, we get

α+ δ < 1 +
4

F
.

If we then combine this last inequality with the last equation of the system, we find
the following inequality:

2− 4

F
< 1 +

4

F
,

which is equivalent to
F < 8.

• Vertex type 5 and vertex type 10
In this case we have the following system of equations: 2α+ β = 2

2δ + γ = 2
α+ β + γ + δ = 2 + 4

F

This is equivalent to the following system: β = 2− 2α
γ = 2− 2δ
α+ δ = 2− 4

F

Similar to the previous case, we find that

α+ δ < 1 +
4

F
.

Together with the last equation of the system, this implies

F < 8.

The remaining cases are equivalent to one of these cases by interchanging α with δ and β
with γ.

A question that pops up naturally at this point is which combinations of three vertex
types for vertices of degree 3 are possible. There are 12 combinations of three vertex
types for vertices of degree 3 which we can not exclude at this point. The remaining
combinations can be excluded because they contain one of the combinations of two vertex
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types for vertices of degree 3 that are not allowed by Table 1. The 12 combinations come
in pairs, since interchanging α with δ, and β with γ gives a different combination with the
same properties. From these 12 combinations we can also discard combinations (1,5,10)
and (5,6,10), since (1,10), resp. (6,5), implies that 6 < F , and (5,10) implies that 6 = F .
The remaining 10 combinations are

• (1,3,4) and (6,8,9);

• (1,3,10) and (5,6,8);

• (2,3,4) and (7,8,9);

• (1,5,8) and (3,6,10);

• (2,4,9) and (4,7,9).

Lemma 4.3. There is no spherical tiling by congruent quadrangles of type 2 on more than
8 vertices that contains 3 vertices of degree 3 with pairwise different vertex types.

Proof. We need to examine the remaining 5 cases stated above.

• (1,3,4): In this case we have the following system of equations
3β = 2
α+ β + δ = 2
2α+ γ = 2
α+ β + γ + δ = 2 + 4

F

which is equivalent to  α = 1− 4
F β = 2

3
γ = 8

F
δ = 1

3 + 4
F

If we combine this with inequality 2.4, we get

4

3
<
F + 8

F

which is equivalent to
F < 8.

This is a contradiction because the combination (1,3) implies that 6 < F .

• (1,3,10): In this case we have the following system of equations
3β = 2
α+ β + δ = 2
2δ + γ = 2
α+ β + γ + δ = 2 + 4

F

which is equivalent to  α = 1
3 + 4

F β = 2
3

γ = 8
F

δ = 1− 4
F
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If we combine this with inequality 2.4, we get

4

3
<
F + 8

F

which is equivalent to
F < 8.

This is a contradiction because the combination (1,3) implies that 6 < F .

• (2,3,4): In this case we have the following system of equations
2β + γ = 2
α+ β + δ = 2
2α+ γ = 2
α+ β + γ + δ = 2 + 4

F

which is equivalent to {
α = β = 1− 2

F
γ = δ = 1 + 2

F

This is a contradiction with inequality 2.5.

• (1,5,8): In this case we have the following system of equations
3β = 2
2α+ β = 2
α+ γ + δ = 2
α+ β + γ + δ = 2 + 4

F

which is equivalent to  α = β = 2
3

δ = 4
3 − γ

F = 6

So we find that a quadrangulation which has this combination, has 8 vertices.

• (2,4,9): In this case we have the following system of equations
2β + γ = 2
2α+ γ = 2
2δ + β = 2
α+ β + γ + δ = 2 + 4

F

which is equivalent to 
α = 1− 2

F
β = α
γ = 2− 2α
δ = 2− 2α

If we combine this system with inequality 2.3, we get

2− 4

F
< 1 +

4

F
,
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Figure 5: An example of a cubic quadrangle

which is equivalent to
F < 8.

So we find that a quadrangulation which has this combination, has F = 6, which
implies that it has 8 vertices.

Theorem 4.4. In a spherical tiling by congruent quadrangles of type 2 there are at most
two different vertex types for cubic vertices.

Proof. An enumeration of all possible angle assignments for the cube shows that, up to
equivalence, only one angle assignment admits a spherical tiling by congruent quadrangles
of type 2, and this angle assignment has two vertex types: 3β and α+γ+ δ. Together with
Lemma 4.3 this proves the theorem.

5 Forbidden substructures in spherical tilings by arbitrary congruent
quadrangles of type 2

5.1 Cubic quadrangles

A cubic quadrangle in a quadrangulation is a quadrangle such that all four vertices have
degree 3. Figure 5 shows an example of a cubic quadrangle. In Table 3 an overview of
the number of quadrangulations which contain a cubic quadrangle is given. Note that the
percentage of quadrangulations which contain a cubic quadrangle increases as the size of
the quadrangulations increases.

We prove the following theorem.

Theorem 5.1. A quadrangulation on more than 8 vertices that contains a cubic quadrangle
does not admit a realisation as a spherical tiling by congruent quadrangles of type 2.

Proof. There are two ways of assigning the edges of length a and b to the edges of the
cubic quadrangle and its neighbouring faces. These two ways are shown in Figure 6. If
we take the complete quadrangulation into account, then these two ways will of course be
realised in different ways, but this is not important for this proof.

In both edge assignments there is at least one cubic vertex that is incident to an edge
of length b, and one cubic vertex that is not. Owing to Theorem 4.4, all cubic vertices
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Figure 6: Possible edge assignments for a cubic quadrangle and its neighbouring faces.
The bold edge corresponds to an edge of length b.

incident to an edge of length b have the same type, and all cubic vertices not incident to
an edge of length b have the same type. This means that we can already fix some angle
assignments for both cases in Figure 6. This partial angle assignment is shown in Figure 7.
The angles in the cubic quadrangle can be fixed, since interchanging α with δ and β with
γ gives the same results. The angles in the face that shares an edge of length b with the
cubic quadrangle can be fixed, since the other possible assignment implies that there are
two different vertex types for cubic vertices incident to an edge of length b: one containing
2α and one containing 2δ.

We first consider the edge assignment on the left side in Figure 6. The angle assignment
for the quadrangle 1562 fixes all remaining angle assignments for the faces neighbouring
the cubic quadrangle: either the vertex type of 1 and 4 is α + δ + β and the vertex type
of 2 and 3 is 2γ + β, or the vertex type of 1 and 4 is α + δ + γ and the vertex type of 2
and 3 is 2β + γ. Owing to Lemma 4.1, these combinations are not possible, so this edge
assignment is not possible.

Next we consider the edge assignment on the right side in Figure 6. The angle assign-
ment for the quadrangle 1562 fixes all remaining angle assignments for the faces neigh-
bouring the cubic quadrangle: either the vertex type of 1, 2 and 4 is α + δ + β and the
vertex type of 3 is 3γ, or the vertex type of 1, 2 and 4 is α + δ + γ and the vertex type of
3 is 3β. Owing to Lemma 4.2, this implies that the quadrangulation has 6 faces, and thus 8
vertices.

5.2 Cubic tristars

A cubic tristar in a quadrangulation is a cubic vertex v such that all three neighbouring
vertices have degree 3. The vertex v is called the central vertex of the cubic tristar. Figure 8
shows an example of a cubic tristar in a quadrangulation.

Theorem 5.2. In a spherical tiling by congruent quadrangles of type 2, there is no cubic
tristar for which the central vertex is incident to an edge of length b.

Proof. We use the vertex labels as given in Figure 8. Assume that the edge 12 has length
b. This implies that either edge 36 or edge 46 has length b. Both cases are completely
analogous, so we will assume without loss of generality that edge 36 has length b.
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Figure 7: Partial angle assignment for a cubic quadrangle.
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Figure 8: An example of a cubic tristar in a quadrangulation.
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Figure 9: Partial angle assignment for a cubic tristar

We can fix the angle assignment in the quadrangle 1274, since interchanging α with δ
and β with γ gives the same results. This also fixes the angle assignment in the quadrangle
1253, since the vertex 1 and the vertex 2 have the same type owing to Theorem 4.4. Since
the vertex 3 is incident to an angle β, also the vertex 1 has to be incident to an angle β, and
so the angle assignment in the quadrangle 1364 is also fixed. This gives the partial angle
assignment shown in Figure 9.

The third angle at vertex 4 is either β or γ. Owing to Lemma 4.1, β is not possible.
Owing to Lemma 4.2, γ implies that the quadrangulation has 6 faces, and thus 8 vertices.
This proves the theorem.

6 Conclusion
For the classification of spherical tilings by congruent quadranglesthere remain two open
cases: spherical tilings by congruent quadrangles of type 2 and those of type 4. We show
that the most symmetric of type 2 quadrangles, i.e., the isosceles quadrangles of type 2,
cannot be used to tile the sphere. This might seem surprising, since spherical tilings by
congruent quadrangles of type 2 do exist, but it can be explained because being isosceles
and tiling the sphere forces the quadrangle to be of type 1.

Next we gave an overview of which vertex types of degree 3 can be used and showed
that at most two different types can be used. We also showed that there is no spherical
tiling by congruent quadrangles of type 2 for which the underlying graph contains a cubic
quadrangle or a cubic tristar containing an edge of length b. As can be seen from Table 3
and Table 4, this excludes already a reasonable percentage of the quadrangulations that can
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n Quadrangulations contain cubic quadrangle Percentage

8 1 1 100.00%
10 1 0 0.00%
12 3 1 33.33%
14 12 3 25.00%
16 64 24 37.50%
18 510 210 41.18%
20 5 146 2 208 42.91%
22 58 782 25 792 43.88%
24 716 607 319 553 44.59%
26 9 062 402 4 110 016 45.35%
28 117 498 072 54 277 671 46.19%
30 1 553 048 548 731 637 255 47.11%

Table 3: Overview of quadrangulations on n vertices that contain a cubic quadrangle.

10 12 14 16 18 20 22 24 26

0 1 2 7 31 217 2 065 22 869 272 106 3 355 499
1 6 68 747 8 804 108 738 1 383 419
2 2 3 15 119 1 249 15 363 201 586
3 5 66 832 11 619
4 2 2 15 259
5 4

Table 4: Overview of the number of cubic tristars in quadrangulations that do not contain
a cubic quadrangle. The top row gives the number of vertices, the first column gives the
number of cubic tristars and the remaining numbers give how many quadrangulations have
that many vertices and that many cubic tristars.

appear as the underlying graph of a spherical tiling by congruent quadrangles of type 2,
and also limits the possible charts that can correspond to a spherical tiling by congruent
quadrangles of type 2. This is why these results can contribute to the completion of the
classification of spherical tilings by congruent quadrangles. Table 3 and Table 4 were
constructed using plantri[6, 4].
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