Johnson graphs are Hamilton-connected

Brian Alspach

School of Mathematical and Physical Sciences University of Newcastle
Callaghan, NSW 2308, Australia

Received 15 December 2011, accepted 15 January 2012, published online 1 June 2012

Abstract

We prove that the Johnson graphs are Hamilton-connected and apply this to obtain that another family of graphs is Hamilton-connected.

Keywords: Hamilton path, Johnson graph, Hamilton-connected.

Math. Subj. Class.: 05C70

1 Main Result

The Johnson graph $J(n, k)$, $0 \leq k \leq n$, is defined by letting the vertices correspond to the k-subsets of an n-set, where two vertices are adjacent if and only if the corresponding k-subsets have exactly $k - 1$ elements in common. A graph is Hamilton-connected if for any pair of distinct vertices u, v there is a Hamilton path whose terminal vertices are u and v. The graph with a single vertex is trivially Hamilton-connected.

In a recent paper [1], I needed a certain graph to be Hamilton-connected. This graph, defined below, contains vertex-disjoint Johnson graphs. The result I needed is embodied in the corollary below.

Theorem 1.1. The Johnson graph $J(n, k)$ is Hamilton-connected for all $n \geq 1$.

Proof. For ease of exposition, instead of talking about the vertex corresponding to a subset, we shall simply treat the subsets as if they are vertices so that we use equality notation between vertices and sets. The graphs $J(n, k)$ and $J(n, n - k)$ are isomorphic via the mapping that takes a k-subset to its complement.

The graphs $J(n, 0)$ and $J(n, n)$, $n \geq 1$, are isomorphic to the single vertex K_1 and trivially Hamilton-connected. The graphs $J(n, 1)$ and $J(n, n - 1), n \geq 1$, are isomorphic to the complete graph K_n. Complete graphs certainly are Hamilton-connected.

We proceed by double induction and when considering $J(n, k)$, the induction hypotheses are: $J(m, k')$ is Hamilton-connected whenever $k' < k$ and $m \geq k'$, or $J(m, k)$ is Hamilton-connected.
Hamilton-connected whenever \(m < n \) and \(m \geq k \). As noted above, \(J(n, 1) \) is Hamilton-connected for all \(n \geq 1 \). For a fixed \(k \) we start with \(J(k, k) \) and then proceed by going from \(J(n - 1, k) \) to \(J(n, k) \). Thus, the induction hypotheses make sense.

If \(k \leq n \leq 2k - 1 \), then \(n - k < k \) so that \(J(n, n - k) \) is Hamilton-connected by hypothesis. This, in turn, implies that \(J(n, k) \) is Hamilton-connected because \(J(n, k) \) and \(J(n, n - k) \) are isomorphic. Thus, it follows that \(J(n, k) \) is Hamilton-connected for all \(n \) satisfying \(k \leq n \leq 2k - 1 \).

For the remaining cases we need to actually show how to find appropriate Hamilton paths. The symmetric group \(S_n \) acts in the obvious way on the vertex set of \(J(n, k) \). This action is transitive so that it suffices to find a Hamilton path from the vertex \(u = \{1, 2, 3, \ldots, k\} \) to any other vertex. Let \(v = \{a_1, a_2, \ldots, a_k\} \) be an arbitrary vertex.

If there is an element \(x \) of \(\{1, 2, \ldots, n\} \) belonging to neither of the sets, we may relabel elements so that \(n \) is missing from both sets. Thus, both \(k \)-sets are subsets of \(\{1, 2, \ldots, n - 1\} \). By induction there is a Hamilton path from \(u \) to \(v \) in \(J(n - 1, k) \). Because the vertices that are adjacent along that path also are adjacent in \(J(n, k) \), let \(P' \) be the corresponding path from \(u \) to \(v \) in \(J(n, k) \). The path \(P' \) contains all the vertices corresponding to \(k \)-subsets that do not contain \(n \).

Let \(w_1 = \{y_1, y_2, \ldots, y_{k-1}, y_k\} \) and \(w_2 = \{y_1, y_2, \ldots, y_{k-1}, z_k\} \) be two adjacent vertices on \(P' \). The vertex \(w_1 \) is adjacent to the vertex \(w_3 = \{y_2, \ldots, y_{k-1}, y_k, n\} \), and the vertex \(w_2 \) is adjacent to the vertex \(w_4 = \{y_2, \ldots, y_{k-1}, z_k, n\} \).

The subgraph \(X \) induced by \(J(n, k) \) on all the subsets containing \(n \) clearly is isomorphic to \(J(n - 1, k - 1) \). Thus, there is a path from \(w_3 \) to \(w_4 \) spanning all the vertices of \(X \). Thus, remove the edge of \(P' \) between \(w_1 \) and \(w_2 \), add the edges \(w_1w_3 \) and \(w_2w_4 \), and then add the path from \(w_3 \) to \(w_4 \) spanning \(X \). The resulting path is a Hamilton path in \(J(n, k) \) with \(u \) and \(v \) as terminal vertices.

If \(n > 2k \), then there always is an element \(x \) missing both subsets and the preceding argument establishes that \(J(n, k) \) is Hamilton-connected. If \(n = 2k \), there is exactly one subset that fails the criterion, namely, the complement of \(\{1, 2, \ldots, k\} \). So we need to find a Hamilton path in \(J(2k, k) \) from \(u \) to its complement.

Consider the \(k \)-subsets of \(\{1, 2, \ldots, 2k\} \) not containing the element \(2k \). The subgraph induced by \(J(2k, k) \) on this collection of subsets is isomorphic to the graph \(J(2k - 1, k) \). It is Hamilton-connected by induction so that there is a Hamilton path from \(u \) to \(w = \{1, 2, \ldots, k - 1, 2k - 1\} \). Let \(P \) be the copy of this path in \(J(2k, k) \).

Now consider all the \(k \)-subsets of \(\{1, 2, \ldots, 2k\} \) that contain the element \(2k \). The subgraph \(Y' \) induced on this collection of sets is isomorphic to \(J(2k - 1, k - 1) \) so that it has a spanning path from \(\{1, 2, \ldots, k - 1, 2k\} \) to \(\{k + 1, k + 2, \ldots, 2k\} \). Because the intermediate terminal vertices on the two paths are adjacent, we have a Hamilton path in \(J(2k, k) \) from \(u \) to its complement. This completes the proof.

The corollary below is the real target of this short paper. We need to define a particular graph first. Let \(A = \{a_1, a_2, \ldots, a_m\} \) be a non-empty subset of \(\{0, 1, 2, \ldots, n\} \) such that the elements are listed in the order \(a_1 < a_2 < \cdots < a_m \). We define the graph \(QJ(n, A) \) in the following way. For each \(a_i \in A \), we include a copy of the Johnson graph \(J(n, a_i) \). Thus far the Johnson graphs are vertex-disjoint. We then insert edges between \(J(n, a_i) \) and \(J(n, a_{i+1}) \), for each \(i \), using set inclusion, that is, we join an \(a_i \)-subset \(S_1 \) and an \(a_{i+1} \)-subset \(S_2 \) if \(S_1 \) is contained in \(S_2 \). The graph \(QJ(n, A) \) can be pictured as having levels made up of Johnson graphs with edges between successive levels based on set inclusion.
Corollary 1.2. The graph $QJ(n, A)$ is Hamilton-connected for all $n \geq 1$.

Proof. If A is a singleton set, then $QJ(n, A)$ is a Johnson graph and the result follows from Theorem 1.1. Hence, we assume that A has at least two elements. Suppose that u and v are two vertices of $QJ(n, A)$ lying at different levels, where u has cardinality a_i, v has cardinality a_j, and $a_i < a_j$. Construct a path starting at u that spans the vertices at level a_i and terminates at an arbitrary vertex u_i at level a_i.

Choose a neighbor u_{i+1} of u_i at level a_{i+1} making certain it is distinct from v if $j = i + 1$. Then add the edge from u_i to u_{i+1} followed by a path spanning the vertices at level a_{i+1}. If v happens to lie at this level make certain the path terminates at v. Otherwise, the path can terminate at any vertex at level a_{i+1}.

It is obvious how to continue this until we have a path starting at u, terminating at v, and spanning all the vertices at levels a_i, a_{i+1} up through level a_j. If this happens to be all the levels of $QJ(n, A)$, then we have found a Hamilton path joining u and v. If we are missing levels, we then continue as follows.

If there are missing levels above level a_j, then remove an edge xy of the current path at level a_j and take distinct neighbors x' and y' of x and y, respectively, at level a_{j+1}. Then extend to a larger path by taking a path joining x' and y' spanning all the vertices at level a_{j+1}. If x and y don’t have distinct neighbors at level a_{j+1}, then $a_{j+1} = n$ and the level is the singleton vertex $w = \{1, 2, 3, \ldots, n\}$ which is adjacent to everything at level a_j so that we replace the edge xy of the path with the 2-path xwy.

It is obvious how to continue adding the vertices one level at a time until we finish with the top level. We also can do the analogous extension with the levels below a_i until we achieve a Hamilton path in $Q(n, A)$ that has u and v as terminal vertices.

If u and v are at the same level. Then we start with a path spanning level a_i that has u and v as terminal vertices. We then extend the path through the other levels as above. This completes the proof.

Corollary 1.2 allows us to process a variety of collections of sets of different cardinalities where we can move from one set to another either by a revolving door operation or restricted inclusions. This is what was required in [1].

References