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Abstract

In this paper, we prove that given a 2-edge-coloured complete graph K4n that has the
same number of edges of each colour, we can always find a perfect matching with an equal
number of edges of each colour. This solves a problem posed by Caro, Hansberg, Lauri,
and Zarb. The problem is also independently solved by Ehard, Mohr, and Rautenbach.
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1 Introduction
Note that in this paper, we will use the word ‘matching’ when in fact we mean ‘perfect
matching’.

For an edge-colouring function f : E(G) → S of a graph G where S ⊆ Z and a
subgraph H of G, if

∑
e∈E(H) f(e) = 0 then H is called a zero-sum subgraph of G.

The research in zero-sum problems can be traced back to the three theorems that
give them the algebraic foundation. These are the Erdős-Ginzberg-Ziv Theorem [13], the
Cauchy-Davenport Theorem [11], and Chevalley’s Theorem [10]. Early zero-sum results
concern with the sum taken in additive group Zk, the area is called Zero-sum Ramsey
Theory. This theory studies the zero-sum Ramsey number R(G,Zk) which is the smallest
number n such that in every Zk-edge-colouring of r-uniform hypergraph on n vertices K(r)

n

there exists a zero-sum modulo k copy of G. It also studies the zero-sum bipartite Ramsey
number B(G,Zk) which is the smallest number n such that in every Zk-edge-colouring of
Kn,n there exists a zero-sum modulo k copy of G. For more complete developments of the
topic consult [1, 3].
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In [2], Caro gave the complete characterization of the zero-sum modulo 2 Ramsey
number R(G,Z2). In [7], Caro and Yuster gave the characterization of zero-sum modulo
2 bipartite Ramsey numbers. Along with [8] and [14], these four papers completely solved
the zero-sum Ramsey theory over Z2. Caro and Yuster [9] were the first to consider zero-
sum problems over Z. Recently, several variants of the zero-sum problems have been
studied (see, e.g. [5, 6]).

In [4], Caro, Hansberg, Lauri, and Zarb had studied zero-sum subgraphs where S =
{−1, 1} from various host graphs and various kinds of subgraphs. They then proved what
they call the ‘Master Theorem’ which covers many results of this kind. However there is
a remarkable variation of zero-sum subgraph problem that has not been decided by their
work in that paper. So they posed it at the end of the paper and the problem is the following:

Problem 1.1. Suppose f : E(K4n) → {−1, 1} is such that it is a zero-sum graph. Does a
zero-sum matching always exist?

Observe that this problem essentially wants us to find a matching that has an equal
number of edges that were assigned with −1 and 1 out of a complete graph of degree 4n
that had been assigned an equal number of −1 and 1 to their edges. This allows us to
discard the arithmetic meanings of −1 and 1 and replace them with general colour names.
In this paper, we choose to use black and red.

Our main result is the following theorem whose proof is equivalent to the solution of
Problem 1.1.

Theorem 1.2. For any 2-edge-colouring of K4n with an equal number of edges of each
colour, there exists a matching with an equal number of edges of each colour.

Recently, Problem 1.1 had been independently resolved by Ehard, Mohr, and Rauten-
bach [12].

2 Terminology
To facilitate the language of our proof, we introduce the following notations and terminolo-
gies.

For a graph G, we define M(G) to denote the set of all matchings in G.
In K4n, n ∈ N, we define the operation S : M(G)× V (G)4 → M(G) by

S(M,u, v, x, y) =

{
(V (M), E(M) ∪ {ux, vy} − {uv, xy}) if uv ∈ M and xy ∈ M,

M otherwise.

This operation will be called a swapping (see Figure 1).
If M is a matching extracted from 2-edge-coloured K4n, VB(M) will denote the set of

all vertices of M incident to a black edge in M , while VR(M) will denote the same thing
for red.

For any disjoint subsets S, T ⊆ V (G), E(S, T ) denotes the set of all edges with one
endpoint in S and one endpoint in T .

Let b(M) and r(M) denote the number of black edges and red edges in M respectively.
Lastly, sometimes we will shorten the phrase ‘the difference between the number of

edges of each colour’ to merely ‘the difference’. As there will be only one kind of differ-
ence in this work, this should cause no ambiguity.

Now we have all the terminologies needed for our proof.
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S(M,u, v, x, y)

Figure 1: The result of a swapping. All other edges in the matching stays the same.

3 Proof of the Theorem

We first state an important observation as a lemma.

Lemma 3.1. For M ∈ M(G), if there are more red edges than black edges in E(VR(M),
VB(M)), then we can make a swapping that will increase the number of red edges and
decrease the number of black edges in M by 1 each. In particular, if there are more black
edges than red edges in M and there are more red edges than black edges in E(VR(M),
VB(M)), then we can make a swapping that will reduce the difference by 2.

Proof. Consider two edges of M , one black and one red, uv and xy respectively. The edges
joining between the vertices of these two edges will be among the following six varieties

u v

x y

u v

x y

u v

x y

Figure 2: The first three varieties.
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Figure 3: The first three varieties.

Observe that in the first three varieties the number of black edges are no fewer than the
numbers of red edges and that the resulting matchings from S(M,u, v, x, y) and S(M,u, v,
y, x) will never reduce the difference between the numbers of black edges and red edges
that we had from M .
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While in the last three varieties the numbers of red edges are no fewer than the numbers
of black edges and that at least one of the resulting matchings from S(M,u, v, x, y) or
S(M,u, v, y, x) reduces the difference between the numbers of black edges and red edges
that we had from M .
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So if there are more red edges than black edges joining between VB(M) and VR(M),
we can guarantee the existence of a pair of edges, one black and one red, in M such that
the edges joining between them form one of the latter three (in fact two) varieties.
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Using this pair of edges and appropriate order of vertices, we can make a swapping that
will increase the number of red edges and decrease the number of black edges that we had
from M by 1 each.

Note that in any cases, we have replaced one black edge and one red edge with two red
edges, so that the difference between the number of black edges and red edges that we had
from M will change by 2 in the resulting matching. If initially there are more black edges
than red edges in M , the difference will reduce by 2. But if initially there are more red
edges than black edges in M , the difference will increase by 2.

Remark 3.2. If we are to read the proof of this lemma with the colour red and black in
place of each other, the same thing will happen to the colour black when there are more
black edges than red edges joining between VB(M) and VR(M).

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. In our attempt to prove this statement, we will first take an arbitrary
matching of K4n, then gradually reduce the difference between the numbers of edges of
each colour.

To achieve that, we will construct a finite sequence of matchings in M(G) which as our
sequence progress |b(M)− r(M)|, the difference between the numbers of edges of each
colour, will gradually and strictly decrease until it reaches zero.

To start the proof, we first pick an arbitrary matching M of G.
We take this M as M0, the zeroth term of our sequence.
Next, we proceed to obtain next terms of our sequence by the following method.
For nonnegative integer i, if Mi is a term in our sequence, it is without loss of generality

to assume that b(Mi) ⩾ r(Mi).
Now we have three cases to consider.

Case 1: b(Mi) = r(Mi)
In this case, we end our sequence and take Mi as the matching we have been looking

for.

Case 2: b(Mi)− r(Mi) > 2

Case 2.1: G[VB(Mi)] is monochromatic.
We claim that there are more red edges than black edges between VB(Mi) and VR(Mi).
Since b(Mi) > r(Mi), |VB(Mi)| > |VR(Mi)| so there are more edges in G[VB(Mi)]

than in G[VR(Mi)].
Recall that in our graph, the number of red edges and the number of black edges are

equal.
Since G[VB(Mi)] is monochromatic(black) and e(G[VB(Mi)]) > e(G[VR(Mi)]), there

must be more red edges between VB(Mi) and VR(Mi) than black edges.
By applying the lemma to Mi, we can make a swapping that will reduce the difference

by 2.
We take the resulting matching of this swapping as Mi+1 in our sequence.

Case 2.2: G[VB(Mi)] is not monochromatic.
Since G[VB(Mi)] is not monochromatic, there is a red edge, ux, in G[VB(Mi)].
Since u, x ∈ VB(Mi) and ux is red, there must be v, y ∈ VB(Mi) such that uv, xy ∈

Mi.
We take S(Mi, u, v, x, y) to be Mi+1 in our sequence.
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This resulting matching will reduce the difference between the number of black edges
and red edges by 2 or 4 compared to that of Mi, depending on the colour of vy (see Fig-
ure 4).

u x

v y

vy is black

u x

v y

vy is red

u x

v y

If vy is black, the difference reduces by 2. If vy is red, the difference reduces by 4.

Figure 4: Two possibilities of swapping.

Case 3: b(Mi)− r(Mi) = 2

Case 3.1: G[VB(Mi)] is monochromatic.
The reasoning and execution of this case are the same as the Case 2.1.

Case 3.2: G[VB(Mi)] is not monochromatic.

Claim A. If there are more red edges than black edges between VB(Mi) and VR(Mi), then
we are done.

Proof. By applying the lemma to Mi, we can make a swapping that will reduce the differ-
ence by 2.

We take the resulting matching of this swapping as Mi+1 in our sequence.

Thus we may assume that there are not more red edges than black edges between
VB(Mi) and VR(Mi).

Claim B. If there are u, v, x, y ∈ VB(Mi) such that uv, xy ∈ E(Mi), ux is red and vy is
black in G, then we are done.

Proof. This claim is the same as Case 2.2 where vy is black. We take S(Mi, u, v, x, y) to
be Mi+1.

This reduce the difference by 2, so that it becomes 0.
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Thus we may assume that for all u, v, x, y ∈ VB(Mi) such that uv, xy ∈ E(Mi), if ux
is red then vy is also red in G

We observe that , as a consequence of this assumption, red edges always appear in pairs
and each red edge only involve two edges of Mi, namely those that share a vertex with it.
So if we count the number of red edges in G[VB(Mi)], it must be an even number.

As it will become important in the rest of the proof, let us make explicit that , as a
consequence of this assumption, there must be n + 1 black edges and n − 1 red edges in
Mi.

So |VB(Mi)| = 2n+2, |VR(Mi)| = 2n−2, e(G[VB(Mi)]) =
(
2n+2

2

)
= 2n2+3n+1,

e(G[VR(Mi)]) =
(
2n−2

2

)
= 2n2 − 5n + 3, the number of edges between VB(Mi) and

VR(Mi) is (2n + 2)(2n − 2) = 4n2 − 4, and finally the total number of edges of each
colour is 1

2

(
4n
2

)
= 4n2 − n.

Claim C. If there is an equal number of red edges and black edges between VB(Mi) and
VR(Mi), then we are done.

Proof. We claim that there is an odd number of black edges in G[VR(Mi)]. Note that there
is an even number of red edges in G[VB(Mi)] and an even number of edges of each colour
joining VB(Mi) and VR(Mi).

Since the argument is just a simple parity analysis, to avoid a verbose and confusing
argument, we present the following table as our argument.

n total black edges e(G[VB(Mi)]) black edges in G[VR(Mi)]

even even odd odd
odd odd even odd

So there is an odd number of black edges in G[VR(Mi)].
Thus there are p, q, r, s ∈ VR(Mi) such that pq, rs ∈ E(Mi), pr is red and qs is black

in G.
Let M ′

i = S(Mi, p, q, r, s). Now M ′
i has n+ 2 black edges and n− 2 red edges.

Observe that after the latest swapping occurs, those vertices and edges originally in
G[VB(Mi)] are all contained in G[VB(M

′
i)].

As a premise of this Case 3.2 states that there is a red edge in G[VB(Mi)], there must
be u, v, x, y ∈ VB(Mi) ⊂ VB(M

′
i) such that uv, xy ∈ E(Mi) and ux, vy are red in G.

Since uv, xy ∈ E(M ′
i), we take Mi+1 to be S(M ′

i , u, v, x, y).
This reduce the difference by 2, so that it becomes 0.

Thus we may assume that there are more black edges than red edges between VB(Mi)
and VR(Mi).

For the sake of clarity of how we divide our next cases, we will consider the question
”What is the least number of red edges that have to be in G[VB(Mi)]?”.

So we will have to maximize the number of red edges outside of G[VB(Mi)].
Thus all the edges in G[VR(Mi)] and 4n2−4

2 − 1 = 2n2 − 3 edges between VB(Mi)
and VR(Mi) have to be red. Since there are 4n2 − n red edges in total, there are at least
(4n2 − n)− (2n2 − 5n+ 3)− (2n2 − 3) = 4n red edges in G[VB(Mi)]

Claim D. If there are more than 4n red edges in G[VB(Mi)], then we are done.
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Proof. Since there are more black edges than red edges joining VB(Mi) and VR(Mi),
from our lemma, there must be a black edge uv and a red edge xy of Mi such that
S(Mi, u, v, x, y) will increase the number of black edges from that of Mi by one.

But before we make the swapping, we consider that there are 4n edges adjacent to uv
in G[VB(Mi)]. So that there is a red edge not adjacent to uv.

As a consequence of the assumption right after Claim B, a red edge implies an existence
of another red edge, there are p, q, r, s ∈ VB(Mi) − {u, v} such that pq, rs ∈ E(Mi) and
pr, qs are red in G.

Let M ′
i = S(Mi, u, v, x, y) so that there are n+ 2 black edges and n− 2 red edges.

We take S(M ′
i , p, q, r, s) to be our Mi+1.

The first swap increase the difference by 2 to be 4, then the second swap reduce the
difference by 4 to 0.

Thus we may assume that there are exactly 4n red edges in G[VB(Mi)]

As a consequence of this assumption, there are 4n2−4
2 −1 = 2n2−3 red edges between

VB(Mi) and VR(Mi) and G[VR(Mi)] is monochromatic (red).
Claim E. If there is a pair of edges in Mi of different colours such that the edges that lie
between them are of the latter three varieties shown in the proof of our lemma, then we are
done.

Proof. In this case we are guaranteed a swapping that will reduce the difference between
the numbers of black edges and red edges by 2 to 0. We take the resulting matching of that
swapping to be Mi+1

Thus we may assume that each pair of edges of different colours in Mi have edges of
the first three varieties between them.

Since there are 2n2−1 black edges and 2n2−3 red edges between VB(Mi) and VR(Mi)
and the edges are from just the first three varieties, there is only one possibility.

That is there is a black uv and a red xy connected to each other by edges of type two,
while other pairs of edges in Mi are connected by edges of type three in G.

Without loss of generality let ux be red in G.
Claim F. There is a red edge not adjacent to uv in G[VB(Mi)]

Proof. As in Claim D, there must be p, q, r, s ∈ VB(Mi)−{u, v} such that pq, rs ∈ E(Mi)
and pq, rs are red in G.

As in Claim D, we take S(S(Mi, u, v, y, x), p, q, r, s) as our Mi+1.
This effectively reduce the difference from 2 to 0.

Thus we may assume that all 4n red edges are adjacent to uv in G[VB(Mi)]
In G[VB(Mi)], u and v each connecting to 2n vertices apart from each other.
Thus they collectively involve 4n edges, so that all of those edges are red.

Claim G. There is a member of VB(Mi)− {u, v} that is joined with y by a black edge.

Proof. Let this member of VB(Mi)− {u, v} be called z.
Since z ∈ VB(Mi), there is a w ∈ VB(Mi) such that zw ∈ E(Mi).
Now vw is red and vy, yz, zw are black in G.
We take S(S(Mi, u, v, x, y), v, y, w, z) as our Mi+1 (see Figure 5).
First swapping does not change the difference, while the second one reduce it by 2

to 0.
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Figure 6

Thus we may assume that all members of VB(Mi) − {u, v} are joined with y by red
edges.

Observe that from our premises every red edge in G[VB(Mi)] has to have either u or v
as an endpoint and that all the edges joining u or v with any member in VB(Mi) − {u, v}
are red.

Now choose any p, q ∈ VB(Mi) − {u, v}. The edge pq is black while up and yq are
red.

We take S(S(Mi, u, v, y, x), u, y, p, q) as our Mi+1 (see Figure 6).
First swapping increase the difference by 2 to be 4, then the second one reduce it by 4

to 0.
Now, every case, except for Case 1 which is the terminal case, strictly reduces the

difference between the numbers of black edges and red edges as we are creating new terms
for our sequence.

Note that in no case the difference was reduced by more than its value.
Thus as our sequence progresses the difference strictly decreases and when it termi-

nates, the last term of the sequence has the difference of 0.
That is by following this method, we can always guarantee a matching which has the

same number of black edges and red edges.
This proves our theorem.

4 Concluding Remarks
We have proved Theorem 1.2 which settles the problem posed in [4]. Now we know that
if we are given a 2-edge-coloured complete graph of order 4n with the same number of
edges of each colour, we can extract a matching that has the same number of edges of each
colour.

We would like to pose two problems that are related to the result that we have proven.
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The first problem is a generalization of our result. In our theorem, we study only the case
where the complete graph K4n is 2-edge-coloured and those two colours colour an equal
number of edges. An obvious generalization of this problem is to consider the similar
situation when there are more than two colours involved. Now we pose the following
question which is a generalization of our result.

Problem 4.1. For any k-edge-colouring of K2kn such that there are an equal number of
edges of each colour. Does there exist a matching such that there are an equal number of
edges of each colour?

The second problem comes from the fact that when we take a matching with an equal
number of edges of each colour out of our original complete graph, we are left with a graph
that has the same number of edges of each colour. One question that comes up is ‘can
we take another such matching?’. If we can, can we continue until all edges are gone?
If we cannot exhaust the edges with an arbitrary order of taking matchings out, is there
any sequence of taking matchings out that would use all edges? This leads us to pose the
following problem.

Problem 4.2. Given a 2-edge-coloured K4n with an equal number of edges of each colour.
Can the graph be decomposed into perfect matchings such that each matching has the same
number of edges of each colour?
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