On Hermitian varieties in $\text{PG}(6, q^2)$

Angela Aguglia *

*Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy

Luca Giuzzi †

DICATAM, University of Brescia, Via Branze 53, I-25123 Brescia, Italy

Masaaki Homma

Department of Mathematics and Physics, Kanagawa University, Hiratsuka 259-1293, Japan

Received 8 June 2020, accepted 15 February 2021

Abstract

In this paper we characterize the non-singular Hermitian variety $\mathcal{H}(6, q^2)$ of $\text{PG}(6, q^2)$, $q \neq 2$ among the irreducible hypersurfaces of degree $q + 1$ in $\text{PG}(6, q^2)$ not containing solids by the number of its points and the existence of a solid S meeting it in $q^4 + q^2 + 1$ points.

Keywords: Unital, Hermitian variety, algebraic hypersurface.

1 Introduction

The set of all absolute points of a non-degenerate unitary polarity in $\text{PG}(r, q^2)$ determines the Hermitian variety $\mathcal{H}(r, q^2)$. This is a non-singular algebraic hypersurface of degree $q + 1$ in $\text{PG}(r, q^2)$ with a number of remarkable properties, both from the geometrical and the combinatorial point of view; see [5, 16]. In particular, $\mathcal{H}(r, q^2)$ is a 2-character set with respect to the hyperplanes of $\text{PG}(r, q^2)$ and 3-character blocking set with respect to the...
lines of $\text{PG}(r, q^2)$ for $r > 2$. An interesting and widely investigated problem is to provide combinatorial descriptions of $\mathcal{H}(r, q^2)$ among all hypersurfaces of the same degree.

First, we observe that a condition on the number of points and the intersection numbers with hyperplanes is not in general sufficient to characterize Hermitian varieties; see [1],[2]. On the other hand, it is enough to consider in addition the intersection numbers with codimension 2 subspaces in order to get a complete description; see [7].

In general, a hypersurface \mathcal{H} of $\text{PG}(r, q)$ is viewed as a hypersurface over the algebraic closure of $\text{GF}(q)$ and a point of $\text{PG}(r, q^l)$ in \mathcal{H} is called a $\text{GF}(q^l)$-point. A $\text{GF}(q)$-point of \mathcal{H} is also said to be a rational point of \mathcal{H}. Throughout this paper, the number of $\text{GF}(q^l)$-points of \mathcal{H} will be denoted by $N_{q^l}(\mathcal{H})$. For simplicity, we shall also use the convention $|\mathcal{H}| = N_q(\mathcal{H})$.

In the present paper, we shall investigate a combinatorial characterization of the Hermitian hypersurface $\mathcal{H}(6, q^2)$ in $\text{PG}(6, q^2)$ among all hypersurfaces of the same degree having also the same number of $\text{GF}(q^2)$-rational points.

More in detail, in [12, 13] it has been proved that if \mathcal{X} is a hypersurface of degree $q+1$ in $\text{PG}(r, q^2)$, $r \geq 3$ odd, with $|\mathcal{X}| = |\mathcal{H}(r, q^2)| = (q^{r+1} + (1)^r)(q^r - (1)^r)/(q^2 - 1)$ $\text{GF}(q^2)$-rational points, not containing linear subspaces of dimension greater than r^{-1}, then \mathcal{X} is a non-singular Hermitian variety of $\text{PG}(r, q^2)$. This result generalizes the characterization of [8] for the Hermitian curve of $\text{PG}(2, q^2)$, $q \neq 2$.

The case where $r > 4$ is even is, in general, currently open. A starting point for a characterization in arbitrary even dimension can be found in [3] where the case of a hypersurface \mathcal{X} of degree $q+1$ in $\text{PG}(4, q^2)$, $q > 3$ is considered. There, it is shown that when \mathcal{X} has the same number of rational points as $\mathcal{H}(4, q^2)$, does not contain any subspaces of dimension greater than 1 and meets at least one plane π in $q^2 + 1$ $\text{GF}(q^2)$-rational points, then \mathcal{X} is a Hermitian variety.

In this article we deal with hypersurfaces of degree $q+1$ in $\text{PG}(6, q^2)$ and we prove that a characterization similar to that of [3] holds also in dimension 6. We conjecture that this can be extended to arbitrary even dimension.

Theorem 1.1. Let S be a hypersurface of $\text{PG}(6, q^2)$, $q > 2$, defined over $\text{GF}(q^2)$, not containing solids. If the degree of S is $q+1$ and the number of its rational points is $q^{11} + q^9 + q^7 + q^4 + q^2 + 1$, then every solid of $\text{PG}(6, q^2)$ meets S at least $q^4 + q^2 + 1$ rational points. If there is at least a solid Σ_3 such that $|\Sigma_3 \cap S| = q^4 + q^2 + 1$, then S is a non-singular Hermitian variety of $\text{PG}(6, q^2)$.

Furthermore, we also extend the result obtained in [3] to the case $q = 3$.

2 Preliminaries and notation

In this section we collect some useful information and results that will be crucial to our proof.

A Hermitian variety in $\text{PG}(r, q^2)$ is the algebraic variety of $\text{PG}(r, q^2)$ whose points $\langle v \rangle$ satisfy the equation $\eta(v, v) = 0$ where η is a sesquilinear form $\text{GF}(q^2)^{r+1} \times \text{GF}(q^2)^{r+1} \rightarrow \text{GF}(q^2)$. The radical of the form η is the vector subspace of $\text{GF}(q^2)^{r+1}$ given by

$$\text{Rad}(\eta) := \{ w \in \text{GF}(q^2)^{r+1} : \forall v \in \text{GF}(q^2)^{r+1}, \eta(v, w) = 0 \}.$$

The form η is non-degenerate if $\text{Rad}(\eta) = \{0\}$. If the form η is non-degenerate, then the corresponding Hermitian variety is denoted by $\mathcal{H}(r, q^2)$ and it is non-singular, of degree
$q + 1$ and contains

$$(q^r+1+(-1)^r)(q^r-(-1)^r)/(q^2-1)$$

$\text{GF}(q^2)$-rational points. When η is degenerate we shall call vertex R_t of the degenerate Hermitian variety associated to η the projective subspace $R_t := \text{PG}(\text{Rad}(\eta)) := \{\langle w \rangle : w \in \text{Rad}(\eta)\}$ of $\text{PG}(r, q^2)$. A degenerate Hermitian variety can always be described as a cone of vertex R_t and basis a non-degenerate Hermitian variety $H(r-t, q^2)$ disjoint from R_t where $t = \dim(\text{Rad}(\eta))$ is the vector dimension of the radical of η. In this case we shall write the corresponding variety as $R_t H(r-t, q^2)$. Indeed,

$$R_t H(r-t, q^2) := \{X \in \langle P, Q \rangle : P \in R_t, Q \in H(r-t, q^2)\}.$$

Any line of $\text{PG}(r, q^2)$ meets a Hermitian variety (either degenerate or not) in either $1, q + 1$ or $q^2 + 1$ points (the latter value only for $r > 2$). The maximal dimension of projective subspaces contained in the non-degenerate Hermitian variety $H(r, q^2)$ is $(r - 2)/2$, if r is even, or $(r - 1)/2$, if r is odd. These subspaces of maximal dimension are called generators of $H(r, q^2)$ and the generators of $H(r, q^2)$ through a point P of $H(r, q^2)$ span a hyperplane P^\perp of $\text{PG}(r, q^2)$, the tangent hyperplane at P.

It is well known that this hyperplane meets $H(r, q^2)$ in a degenerate Hermitian variety $PH(r-2, q^2)$, that is in a Hermitian cone having as vertex the point P and as base a non-singular Hermitian variety of $\Theta \cong \text{PG}(r-2, q^2)$ contained in P^\perp with $P \not\in \Theta$.

Every hyperplane of $\text{PG}(r, q^2)$, which is not tangent, meets $H(r, q^2)$ in a non-singular Hermitian variety $H(r-1, q^2)$, and is called a secant hyperplane of $H(r, q^2)$. In particular, a tangent hyperplane contains

$$1 + q^2(q^{r-1} + (-1)^r)(q^{r-2} - (-1)^r)/(q^2 - 1)$$

$\text{GF}(q^2)$-rational points of $H(r, q^2)$, whereas a secant hyperplane contains

$$(q^r + (-1)^{r-1})(q^{r-1} - (-1)^{r-1})/(q^2 - 1)$$

$\text{GF}(q^2)$-rational points of $H(r, q^2)$.

We now recall several results which shall be used in the course of this paper.

Lemma 2.1 ([15]). Let d be an integer with $1 \leq d \leq q + 1$ and let C be a curve of degree d in $\text{PG}(2, q)$ defined over $\text{GF}(q)$, which may have $\text{GF}(q)$-linear components. Then the number of its rational points is at most $dq + 1$ and $N_q(C) = dq + 1$ if and only if C is a pencil of d lines of $\text{PG}(2, q)$.

Lemma 2.2 ([10]). Let d be an integer with $2 \leq d \leq q + 2$, and C a curve of degree d in $\text{PG}(2, q)$ defined over $\text{GF}(q)$ without any $\text{GF}(q)$-linear components. Then $N_q(C) \leq (d-1)q + 1$, except for a class of plane curves of degree 4 over $\text{GF}(4)$ having 14 rational points.

Lemma 2.3 ([11]). Let S be a surface of degree d in $\text{PG}(3, q)$ over $\text{GF}(q)$. Then

$$N_q(S) \leq dq^2 + q + 1$$

Lemma 2.4 ([8]). Suppose $q \neq 2$. Let C be a plane curve over $\text{GF}(q^2)$ of degree $q + 1$ without $\text{GF}(q^2)$-linear components. If C has $q^3 + 1$ rational points, then C is a Hermitian curve.
Lemma 2.5 ([7]). A subset of points of $\text{PG}(r, q^2)$ having the same intersection numbers with respect to hyperplanes and spaces of codimension 2 as non-singular Hermitian varieties, is a non-singular Hermitian variety of $\text{PG}(r, q^2)$.

From [9, Th 23.5.1, Th 23.5.3] we have the following.

Lemma 2.6. If \mathcal{W} is a set of $q^7 + q^4 + q^2 + 1$ points of $\text{PG}(4, q^2)$, $q > 2$, such that every line of $\text{PG}(4, q^2)$ meets \mathcal{W} in $1, q + 1$ or $q^2 + 1$ points, then \mathcal{W} is a Hermitian cone with vertex a line and base a unital.

Finally, we recall that a blocking set with respect to lines of $\text{PG}(r, q^2)$ is a point set which blocks all the lines, i.e., intersects each line of $\text{PG}(r, q^2)$ in at least one point.

3 Proof of Theorem 1.1

We first provide an estimate on the number of points of a curve of degree $q + 1$ in $\text{PG}(2, q^2)$, where q is any prime power.

Lemma 3.1. Let \mathcal{C} be a plane curve over $\text{GF}(q^2)$, without $\text{GF}(q^2)$-lines as components and of degree $q + 1$. If the number of $\text{GF}(q^2)$-rational points of \mathcal{C} is $N < q^3 + 1$, then

$$N \leq \begin{cases} q^3 - (q^2 - 2) & \text{if } q > 3 \\ 24 & \text{if } q = 3 \\ 8 & \text{if } q = 2. \end{cases}$$

(3.1)

Proof. We distinguish the following three cases:

(a) \mathcal{C} has two or more $\text{GF}(q^2)$-components;

(b) \mathcal{C} is irreducible over $\text{GF}(q^2)$, but not absolutely irreducible;

(c) \mathcal{C} is absolutely irreducible.

Suppose first $q \neq 2$.

Case (a) Suppose $\mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2$. Let d_i be the degree of \mathcal{C}_i, for each $i = 1, 2$. Hence $d_1 + d_2 = q + 1$. By Lemma 2.2,

$$N \leq N_{q^2}(\mathcal{C}_1) + N_{q^2}(\mathcal{C}_2) \leq [(q + 1) - 2]q^2 + 2 = q^3 - (q^2 - 2)$$

Case (b) Let \mathcal{C}' be an irreducible component of \mathcal{C} over the algebraic closure of $\text{GF}(q^2)$. Let $\text{GF}(q^{2t})$ be the minimum defining field of \mathcal{C}' and σ be the Frobenius morphism of $\text{GF}(q^{2t})$ over $\text{GF}(q^2)$. Then

$$\mathcal{C} = \mathcal{C}' \cup \mathcal{C}'^\sigma \cup \mathcal{C}'^{\sigma^2} \cup \ldots \cup \mathcal{C}'^{\sigma^{t-1}},$$

and the degree of \mathcal{C}', say e, satisfies $q + 1 = te$ with $e > 1$. Hence any $\text{GF}(q^2)$-rational point of \mathcal{C} is contained in $\cap_{i=0}^{t-1} \mathcal{C}'^{\sigma^i}$. In particular, $N \leq e^2 \leq (q + 1)^2$ by Bezout’s Theorem and $(q + 1)^2 < q^3 - (q^2 - 2)$.

Case (c) Let \mathcal{C} be an absolutely irreducible curve over $\text{GF}(q^2)$ of degree $q + 1$. Either \mathcal{C} has a singular point or not.

In general, an absolutely irreducible plane curve \mathcal{M} over $\text{GF}(q^2)$ is q^2-Frobenius non-classical if for a general point $P(x_0, x_1, x_2)$ of \mathcal{M} the point $Pq^2 = Pq^2(x_0^q, x_1^q, x_2^q)$ is
on the tangent line to \(M\) at the point \(P\). Otherwise, the curve \(M\) is said to be Frobenius classical. A lower bound on the number of \(\mathbb{GF}(q^2)\)-points for \(q^2\)-Frobenius non-classical curves is given by [6, Corollary 1.4]: for a \(q^2\)-Frobenius non-classical curve \(C\) of degree \(d\), we have \(N_{q^2}(C') \geq d(q^2 - d + 2)\). In particular, if \(d = q + 1\), the lower bound is just \(q^3 + 1\).

Going back to our original curve \(C\), we know \(C\) is Frobenius classical because \(N < q^3 + 1\). Let \(F(x, y, z) = 0\) be an equation of \(C\) over \(\mathbb{GF}(q^2)\). We consider the curve \(D\) defined by \(\frac{\partial F}{\partial x}x + \frac{\partial F}{\partial y}y + \frac{\partial F}{\partial z}z = 0\). Then \(C\) is not a component of \(D\) because \(C\) is Frobenius classical. Furthermore, any \(\mathbb{GF}(q^2)\)-point \(P\) lies on \(C \cap D\) and the intersection multiplicity of \(C\) and \(D\) at \(P\) is at least 2 by Euler’s theorem for homogeneous polynomials. Hence by Bézout’s theorem, \(2N \leq (q + 1)(q^2 + q)\). Hence

\[
N \leq \frac{1}{2} q(q + 1)^2.
\]

This argument is due to Stöhr and Voloch [18, Theorem 1.1]. This Stöhr and Voloch’s bound is lower than the estimate for \(N\) in case (a) for \(q > 4\) and it is the same for \(q = 4\). When \(q = 3\) the bound in case (a) is smaller than the Stöhr and Voloch’s bound.

Finally, we consider the case \(q = 2\). Under this assumption, \(C\) is a cubic curve and neither case (a) nor case (b) might occur. For a degree 3 curve over \(\mathbb{GF}(q^2)\) the Stöhr and Voloch’s bound is loose, thus we need to change our argument. If \(C\) has a singular point, then \(C\) is a rational curve with a unique singular point. Since the degree of \(C\) is 3, singular points are either cusps or ordinary double points. Hence \(N \in \{4, 5, 6\}\). If \(C\) is nonsingular, then it is an elliptic curve and, by the Hasse-Weil bound, see [19], \(N \in I\) where \(I = \{1, 2, \ldots, 9\}\) and for each number \(N\) belonging to \(I\) there is an elliptic curve over \(\mathbb{GF}(4)\) with \(N\) points, from [14, Theorem 4.2]. This completes the proof.

Henceforth, we shall always suppose \(q > 2\) and we denote by \(S\) an algebraic hypersurface of \(\mathbb{PG}(6, q^2)\) satisfying the following hypotheses of Theorem 1.1:

(S1) \(S\) is an algebraic hypersurface of degree \(q + 1\) defined over \(\mathbb{GF}(q^2)\);
(S2) \(|S| = q^{11} + q^9 + q^7 + q^4 + q^2 + 1\);
(S3) \(S\) does not contain projective 3-spaces (solids);
(S4) there exists a solid \(\Sigma_3\) such that \(|S \cap \Sigma_3| = q^4 + q^2 + 1\).

We first consider the behavior of \(S\) with respect to the lines.

Lemma 3.2. An algebraic hypersurface \(T\) of degree \(q + 1\) in \(\mathbb{PG}(r, q^2)\), \(q \neq 2\), with \(|T| = |\mathbb{H}(r, q^2)|\) is a blocking set with respect to lines of \(\mathbb{PG}(r, q^2)\).

Proof. Suppose on the contrary that there is a line \(\ell\) of \(\mathbb{PG}(r, q^2)\) which is disjoint from \(T\). Let \(\alpha\) be a plane containing \(\ell\). The algebraic plane curve \(C = \alpha \cap T\) of degree \(q + 1\) cannot have \(\mathbb{GF}(q^2)\)-linear components and hence it has at most \(q^3 + 1\) points because of Lemma 2.2. If \(C\) had \(q^3 + 1\) rational points, then from Lemma 2.4, \(C\) would be a Hermitian curve with an external line, a contradiction since Hermitian curves are blocking sets. Thus \(N_{q^2}(C) \leq q^3\). Since \(q > 2\), by Lemma 3.1, \(N_{q^2}(C) < q^3 - 1\) and hence every plane through \(r\) meets \(T\) in at most \(q^3 - 1\) rational points. Consequently, by considering all planes through \(r\), we can bound the number of rational points of \(T\) by \(N_{q^2}(T) \leq (q^3 - 1) \frac{q^{r - 4} - 1}{q^2 - 1}\).
\[q^{2r-3} + \cdots < |\mathcal{H}(r, q^2)|, \] which is a contradiction. Therefore there are no external lines to \(T \) and so \(T \) is a blocking set w.r.t. lines of \(\PG(r, q^2) \).

\[\square \]

Remark 3.3. The proof of [3, Lemma 3.1] would work perfectly well here under the assumption \(q > 3 \). The alternative argument of Lemma 3.2 is simpler and also holds for \(q = 3 \).

By the previous Lemma and assumptions (S1) and (S2), \(S \) is a blocking set for the lines of \(\PG(6, q^2) \). In particular, the intersection of \(S \) with any 3-dimensional subspace \(\Sigma \) of \(\PG(6, q^2) \) is also a blocking set with respect to lines of \(\Sigma \) and hence it contains at least \(q^4 + q^2 + 1 \) GF\((q^2)\)-rational points; see [4].

Lemma 3.4. Let \(\Sigma_3 \) be a solid of \(\PG(6, q^2) \) satisfying condition (S4), that is \(\Sigma_3 \) meets \(S \) in exactly \(q^4 + q^2 + 1 \) points. Then, \(\Pi := S \cap \Sigma_3 \) is a plane.

Proof. \(S \cap \Sigma_3 \) must be a blocking set for the lines of \(\PG(3, q^2) \); also it has size \(q^4 + q^2 + 1 \). It follows from [4] that \(\Pi := S \cap \Sigma_3 \) is a plane. \[\square \]

Lemma 3.5. Let \(\Sigma_3 \) be a solid of satisfying condition (S4). Then, any 4-dimensional projective space \(\Sigma_4 \) through \(\Sigma_3 \) meets \(S \) in a Hermitian cone with vertex a line and basis a Hermitian curve.

Proof. Consider all of the \(q^6 + q^4 + q^2 + 1 \) subspaces \(\Sigma_3 \) of dimension 3 in \(\PG(6, q^2) \) containing \(\Pi \).

From Lemma 2.3 and condition (S3) we have \(|\Sigma_3 \cap S| \leq q^5 + q^4 + q^2 + 1 \). Hence,

\[|S| = (q^7 + 1)(q^4 + q^2 + 1) \leq (q^6 + q^4 + q^2)q^5 + q^4 + q^2 + 1 = |S| \]

Consequently, \(|\Sigma_3 \cap S| = q^5 + q^4 + q^2 + 1 \) for all \(\Sigma_3 \neq \Sigma_3 \) such that \(\Pi \subset \Sigma_3 \).

Let \(C := \Sigma_4 \cap S \). Counting the number of rational points of \(C \) by considering the intersections with the \(q^2 + 1 \) subspaces \(\Sigma_3' \) of dimension 3 in \(\Sigma_4 \) containing the plane \(\Pi \) we get

\[|C| = q^2 \cdot q^5 + q^4 + q^2 + 1 = q^7 + q^4 + q^2 + 1. \]

In particular, \(C \cap \Sigma_3' \) is a maximal surface of degree \(q + 1 \); so it must split in \(q + 1 \) distinct planes through a line of \(\Pi \); see [17]. So \(C \) consists of \(q^3 + 1 \) distinct planes belonging to distinct \(q^2 \) pencils, all containing \(\Pi \); denote by \(\mathcal{L} \) the family of these planes. Also for each \(\Sigma_3' \neq \Sigma_3 \), there is a line \(\ell' \) such that all the planes of \(\mathcal{L} \) in \(\Sigma_3' \) pass through \(\ell' \). It is now straightforward to see that any line contained in \(C \) must necessarily belong to one of the planes of \(\mathcal{L} \) and no plane not in \(\mathcal{L} \) is contained in \(C \).

In order to get the result it is now enough to show that a line of \(\Sigma_4 \) meets \(C \) in either 1, \(q + 1 \) or \(q^2 + 1 \) points. To this purpose, let \(\ell \) be a line of \(\Sigma_4 \) and suppose \(\ell \not\subset C \). Then, by Bezout’s theorem,

\[1 \leq |\ell \cap C| \leq q + 1. \]

Assume \(|\ell \cap C| > 1 \). Then we can distinguish two cases:

1. \(\ell \cap \Pi \neq \emptyset \). If \(\ell \) and \(\Pi \) are incident, then we can consider the 3-dimensional subspace \(\Sigma_3' := \langle \ell, \Pi \rangle \). Then \(\ell \) must meet each plane of \(\mathcal{L} \) in \(\Sigma_3' \) in different points (otherwise \(\ell \) passes through the intersection of these planes and then \(|\ell \cap C| = 1 \)). As there are \(q + 1 \) planes of \(\mathcal{L} \) in \(\Sigma_3' \), we have \(|\ell \cap C| = q + 1 \).
2. $\ell \cap \Pi = \emptyset$. Consider the plane Λ generated by a point $P \in \Pi$ and ℓ. Clearly $\Lambda \not\in \mathcal{L}$. The curve $\Lambda \cap S$ has degree $q + 1$ by construction, does not contain lines (for otherwise $\Lambda \in \mathcal{L}$) and has $q^3 + 1$ GF(q^2)-rational points (by a counting argument).

So from Lemma 2.4 it is a Hermitian curve. It follows that ℓ is a $q + 1$ secant.

We can now apply Lemma 2.6 to see that C_1 is a Hermitian cone with vertex a line. \hfill \square

Lemma 3.6. Let Σ_3 be a space satisfying condition (S4) and take Σ_5 to be a 5-dimensional projective space with $\Sigma_3 \subseteq \Sigma_5$. Then $\Sigma \cap \Sigma_5$ is a Hermitian cone with vertex a point and basis a Hermitian hypersurface $\mathcal{H}(4, q^2)$.

Proof. Let

$$\Sigma_4 := \Sigma_1^4, \Sigma_2^4, \ldots, \Sigma^{q^2+1}_4$$

be the 4-spaces through Σ_3 contained in Σ_5. Put $C_i := \Sigma_i^4 \cap S$, for all $i \in \{1, \ldots, q^2 + 1\}$ and $\Pi := \Sigma_3 \cap C_1$. From Lemma 3.5 C_i is a Hermitian cone with vertex a line, say ℓ_i. Furthermore $\Pi \subseteq \Sigma_3 \subseteq \Sigma_4$ where Π is a plane. Choose a plane $\Pi' \subseteq \Sigma_3^4$ such that $m := \Pi' \cap C_1$ is a line m incident with Π but not contained in it. Let $P_1 := m \cap \Pi$. It is straightforward to see that in Σ_4^4 there is exactly 1 plane through m which is a $(q^4 + q^2 + 1)$-secant, q^2 planes which are $(q^3 + q^2 + 1)$-secant and q^2 planes which are $(q^2 + 1)$-secant.

Also P_1 belongs to the line ℓ_1. There are now two cases to consider:

(a) There is a plane $\Pi'' \neq \Pi'$ not contained in Σ_4^4 for all $i = 1, \ldots, q^2 + 1$ with $m \subseteq \Pi'' \subseteq S \cap \Sigma_5$.

We first show that the vertices of the cones C_i are all concurrent. Consider $m_i := \Pi'' \cap \Sigma_i^4$. Then $\{m_i : i = 1, \ldots, q^2 + 1\}$ consists of $q^2 + 1$ lines (including m) all through P_1. Observe that for all i, the line m_i meets the vertex ℓ_i of the cone C_i in $P_i \in \Pi$. This forces $P_1 = P_2 = \cdots = P_{q^2+1}$. So $P_1 \in \ell_1, \ldots, \ell_{q^2+1}$.

Now let Σ_4 be a 4-dimensional space in Σ_5 with $P_1 \not\in \Sigma_4$; in particular $\Pi \not\subseteq \Sigma_4$. Put also $\Sigma_3 := \Sigma_1^3 \cap \Sigma_4$. Clearly, $r := \Sigma_3 \cap \Pi$ is a line and $P_1 \not\in r$. So $\Sigma_3 \cap \Pi$ cannot be the union of $q + 1$ planes, since if this were to be the case, these planes would have to pass through the vertex ℓ_1. It follows that $\Sigma_3 \cap S$ must be a Hermitian cone with vertex a point and basis a Hermitian curve. Let $\mathcal{W} := \Sigma_4 \cap S$. The intersection $\mathcal{W} \cap \Sigma_4^4$ as i varies is a Hermitian cone with basis a Hermitian curve, so, the points of \mathcal{W} are

$$|\mathcal{W}| = (q^2 + 1)q^5 + q^2 + 1 = (q^2 + 1)(q^5 + 1);$$

in particular, \mathcal{W} is a hypersurface of Σ_4 of degree $q + 1$ such that there exists a plane of Σ_4 meeting \mathcal{W} in just one line (such planes exist in Σ_3). Also suppose \mathcal{W} to contain planes and let $\Pi''' \subseteq \mathcal{W}$ be such a plane. Since $\Sigma_4^4 \cap \mathcal{W}$ does not contain planes, all Σ_4^4 meet Π''' in a line t_i. Also Π''' must be contained in $\bigcup_{i=1}^{q^2+1} t_i$. This implies that the set $\{t_i\}_{i=1,...,q^2+1}$ consists of $q^2 + 1$ lines through a point $P \in \Pi \setminus \{P_1\}$.

Furthermore each line t_i passing through P must meet the radical line ℓ_i of the Hermitian cone $S \cap \Sigma_3$ and this forces P to coincide with P_1, a contradiction. It follows that \mathcal{W} does not contain planes.

So by the characterization of $\mathcal{H}(4, q^2)$ of [3] we have that \mathcal{W} is a Hermitian variety $\mathcal{H}(4, q^2)$.

We also have that $|S \cap \Sigma_5| = |P_1 \mathcal{H}(4, q^2)|$. Let now r be any line of $\mathcal{H}(4, q^2) = S \cap \Sigma_4$ and let Θ be the plane $\langle r, P_1 \rangle$. The plane Θ meets Σ_4' in a line $q_i \subseteq S$ for each $i = 1, \ldots, q^2 + 1$ and these lines are concurrent in P_1. It follows that all the points of Θ are in S. This completes the proof for the current case and shows that $S \cap \Sigma_5$ is a Hermitian cone $P_1 \mathcal{H}(4, q^2)$.

(b) All planes $\Pi^\prime\prime$ with $m \subseteq \Pi^\prime\prime \subseteq S \cap \Sigma_5$ are contained in Σ_4' for some $i = 1, \ldots, q^2 + 1$. We claim that this case cannot happen. We can suppose without loss of generality $m \cap \ell_i = P_1$ and $P_1 \not\in \ell_i$ for all $i = 2, \ldots, q^2 + 1$. Since the intersection of the subspaces Σ_4' is Σ_3, there is exactly one plane through m in Σ_5 which is $(q^2 + q^2 + 1)$-secant, namely the plane $\langle \ell_1, m \rangle$. Furthermore, in Σ_4' there are q^4 planes through m which are $(q^3 + q^2 + 1)$-secant and q^2 planes which are $(q^2 + 1)$-secant. We can provide an upper bound to the points of $S \cap \Sigma_5$ by counting the number of points of $S \cap \Sigma_5$ on planes in Σ_5 through m and observing that a plane through m not in Σ_5 and not contained in S has at most $q^3 + q^2 + 1$ points in common with $S \cap \Sigma_5$. So

$$|S \cap \Sigma_5| \leq q^6 \cdot q^3 + q^7 + q^4 + q^2 + 1.$$

As $|S \cap \Sigma_5| = q^9 + q^7 + q^4 + q^2 + 1$, all planes through m which are neither $(q^4 + q^2 + 1)$-secant nor $(q^2 + 1)$-secant are $(q^3 + q^2 + 1)$-secant. That is to say that all of these planes meet S in a curve of degree $q + 1$ which must split into $q + 1$ lines through a point because of Lemma 2.1.

Take now $P_2 \in \Sigma_4^2 \cap S$ and consider the plane $\Xi := \langle m, P_2 \rangle$. The line $\langle P_1, P_2 \rangle$ is contained in Σ_4^2; so it must be a $(q + 1)$-secant, as it does not meet the vertex line ℓ_2 of C_2 in Σ_4^2. Now, Ξ meets every of Σ_4^i for $i = 2, \ldots, q^2 + 1$ in a line through P_1 which is either a 1-secant or a $q + 1$-secant; so

$$|S \cap \Xi| \leq q^2(q) + q^2 + 1 = q^3 + q^2 + 1.$$

It follows $|S \cap \Xi| = q^3 + q^2 + 1$ and $S \cap \Xi$ is a set of $q + 1$ lines all through the point P_1. This contradicts our previous construction.

□

Lemma 3.7. Every hyperplane of $\text{PG}(6, q^2)$ meets S either in a non-singular Hermitian variety $\mathcal{H}(5, q^2)$ or in a cone over a Hermitian hypersurface $\mathcal{H}(4, q^2)$.

Proof. Let Σ_3 be a solid satisfying condition (S4). Denote by Λ a hyperplane of $\text{PG}(6, q^2)$. If Λ contains Σ_3 then, from Lemma 3.6 it follows that $\Lambda \cap S$ is a Hermitian cone $P \mathcal{H}(4, q^2)$.

Now assume that Λ does not contain Σ_3. Denote by S^j_3, with $j = 1, \ldots, q^2 + 1$ the $q^2 + 1$ hyperplanes through Σ_4^i, where as before, Σ_4^i is a 4-space containing Σ_3. By Lemma 3.6 again we get that $S^j_3 \cap S = P \mathcal{H}(4, q^2)$. We count the number of rational points of $\Lambda \cap S$ by studying the intersections of $S^j_3 \cap S$ with Λ for all $j \in \{1, \ldots, q^2 + 1\}$. Setting $W_j := S^j_3 \cap S \cap \Lambda$, $\Omega := \Sigma_4^i \cap S \cap \Lambda$ then

$$|S \cap \Lambda| = \sum_j |W_j \setminus \Omega| + |\Omega|.$$

If Π is a plane of Λ then Ω consists of $q + 1$ planes of a pencil. Otherwise let m be the line in which Λ meets the plane Π. Then Ω is either a Hermitian cone $P_0 \mathcal{H}(2, q^2)$, or $q + 1$
planes of a pencil, according as the vertex $P^j \in \Pi$ is an external point with respect to m or not.

In the former case \mathcal{W}_j is a non singular Hermitian variety $\mathcal{H}(4, q^2)$ and thus $|S \cap \Lambda| = (q^2 + 1)(q^7) + q^5 + q^2 + 1 = q^9 + q^7 + q^5 + q^2 + 1$.

In the case in which Ω consists of $q + 1$ planes of a pencil then \mathcal{W}_j is either a $P_0 \mathcal{H}(3, q^2)$ or a Hermitian cone with vertex a line and basis a Hermitian curve $\mathcal{H}(2, q^2)$.

If there is at least one index j such that $\mathcal{W}_j = \ell_1 \mathcal{H}(2, q^2)$ then, there must be a 3-dimensional space Σ_j' of $S_j' \cap \Lambda$ meeting S in a generator. Hence, from Lemma 3.6 we get that $S \cap \Lambda$ is a Hermitian cone $P' \mathcal{H}(4, q^2)$.

Assume that for all $j \in \{1, \ldots, q^2 + 1\}$, \mathcal{W}_j is a $P_0 \mathcal{H}(3, q^2)$. In this case $|S \cap \Lambda| = (q^2 + 1)q^7 + (q + 1)q^4 + q^2 + 1 = q^9 + q^7 + q^5 + q^4 + q^2 + 1 = |\mathcal{H}(5, q^2)|$.

We are going to prove that the intersection numbers of S with hyperplanes are only two that is $q^9 + q^7 + q^5 + q^4 + q^2 + 1$ or $q^9 + q^7 + q^4 + q^2 + 1$.

Denote by x_i the number of hyperplanes meeting S in i rational points with $i \in \{q^9 + q^7 + q^5 + q^4 + q^2 + 1, q^9 + q^7 + q^5 + q^4 + q^2 + 1\}$. Double counting arguments give the following equations for the integers x_i:

$$
\begin{align*}
\sum_i x_i &= q^{12} + q^{10} + q^8 + q^6 + q^4 + q^2 + 1 \\
\sum_i i x_i &= |S|(q^{10} + q^8 + q^6 + q^4 + q^2 + 1) \\
\sum_{i=1}^n i(i-1)x_i &= |S|(|S| - 1)(q^8 + q^6 + q^4 + q^2 + 1).
\end{align*}
$$

Solving (3.2) we obtain $x_{q^9+q^7+q^5+q^2+1} = 0$. In the case in which $|S \cap \Lambda| = |\mathcal{H}(5, q^2)|$, since $S \cap \Lambda$ is an algebraic hypersurface of degree $q + 1$ not containing 3-spaces, from [19, Theorem 4.1] we get that $S \cap \Lambda$ is a Hermitian variety $\mathcal{H}(5, q^2)$ and this completes the proof.

Proof of Theorem 1.1. The first part of Theorem 1.1 follows from Lemma 3.4. From Lemma 3.7, S has the same intersection numbers with respect to hyperplanes and 4-spaces as a non-singular Hermitian variety of PG($6, q^2$), hence Lemma 2.5 applies and S turns out to be a $\mathcal{H}(6, q^2)$.

Remark 3.8. The characterization of the non-singular Hermitian variety $\mathcal{H}(4, q^2)$ given in [3] is based on the property that a given hypersurface is a blocking set with respect to lines of PG($4, q^2$), see [3, Lemma 3.1]. This lemma holds when $q > 3$. Since Lemma 3.2 extends the same property to the case $q = 3$ it follows that the result stated in [3] is also valid in PG($4, 3^2$).

4 Conjecture

We propose a conjecture for the general $2n$-dimensional case.

Let S be a hypersurface of PG($2d, q^2$), $q > 2$, defined over GF(q^2), not containing d-dimensional projective subspaces. If the degree of S is $q + 1$ and the number of its rational points is $|\mathcal{H}(2d, q^2)|$, then every d-dimensional subspace of PG($2d, q^2$) meets S in at least $\theta_{q^2}(d - 1) := (q^{2d-2} - 1)/(q^2 - 1)$ rational points. If there is at least a d-dimensional
subspace Σ_d such that $|\Sigma_d \cap S| = |\text{PG}(d-1, q^2)|$, then S is a non-singular Hermitian variety of $\text{PG}(2d, q^2)$.

Lemma 3.1 and Lemma 3.2 can be a starting point for the proof of this conjecture since from them we get that S is a blocking set with respect to lines of $\text{PG}(2d, q^2)$.

References