Lifting symmetric pictures to polyhedral scenes

Viktória E. Kaszanitzky, Bernd Schulze

Abstract


Scene analysis is concerned with the reconstruction of d-dimensional objects, such as polyhedral surfaces, from (d − 1)-dimensional pictures (i.e., projections of the objects onto a hyperplane). In this paper we study the impact of symmetry on the lifting properties of pictures. We first use methods from group representation theory to show that the lifting matrix of a symmetric picture can be transformed into a block-diagonalized form. Using this result we then derive new symmetry-extended counting conditions for a picture with a non-trivial symmetry group in an arbitrary dimension to be minimally flat (i.e., ‘non-liftable’). These conditions imply very simply stated restrictions on the number of those structural components of the picture that are fixed by the various symmetry operations of the picture. We then also transfer lifting results for symmetric pictures from Euclidean (d − 1)-space to Euclidean d-space via the technique of coning. Finally, we offer some conjectures regarding sufficient conditions for a picture realized generically for a symmetry group to be minimally flat.


Keywords


Incidence structure, picture, polyhedral scene, lifting, symmetry, coning

Full Text:

PDF ABSTRACTS (EN/SI)


ISSN: 1855-3974

Issues from Vol 6, No 1 onward are partially supported by the Slovenian Research Agency from the Call for co-financing of scientific periodical publications